python中计算如何实现_由Python运算π的值深入Python中科学计算的实现

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。

你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自Pi WikiPedia page并加以实现。让我们看看下面的代码:

importsys

importmath

defmain(argv):

iflen(argv) !=1:

sys.exit('Usage: calc_pi.py ')

print'\nComputing Pi v.01\n'

a=1.0

b=1.0/math.sqrt(2)

t=1.0/4.0

p=1.0

foriinrange(int(sys.argv[1])):

at=(a+b)/2

bt=math.sqrt(a*b)

tt=t-p*(a-at)**2

pt=2*p

a=at;b=bt;t=tt;p=pt

my_pi=(a+b)**2/(4*t)

accuracy=100*(math.pi-my_pi)/my_pi

print"Pi is approximately: "+str(my_pi)

print"Accuracy with math.pi: "+str(accuracy)

if__name__=="__main__":

main(sys.argv[1:])

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果:

2015417113725870.png?2015317113740

你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

wpid-python_decimal_example-2013-05-28-12-54.png

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113806473.png?2015317113839

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113925777.png?2015317113937

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。

importsys

importmath

fromdecimalimport*

defmain(argv):

iflen(argv) !=1:

sys.exit('Usage: calc_pi.py ')

print'\nComputing Pi v.01\n'

a=Decimal(1.0)

b=Decimal(1.0/math.sqrt(2))

t=Decimal(1.0)/Decimal(4.0)

p=Decimal(1.0)

foriinrange(int(sys.argv[1])):

at=Decimal((a+b)/2)

bt=Decimal(math.sqrt(a*b))

tt=Decimal(t-p*(a-at)**2)

pt=Decimal(2*p)

a=at;b=bt;t=tt;p=pt

my_pi=(a+b)**2/(4*t)

accuracy=100*(Decimal(math.pi)-my_pi)/my_pi

print"Pi is approximately: "+str(my_pi)

print"Accuracy with math.pi: "+str(accuracy)

if__name__=="__main__":

main(sys.argv[1:])

输出结果:

2015417113950921.png?201531711404

好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于Calculating Pi的文章中发现一些代码。他建议我们用以下3个公式:

让我们从Bailey–Borwein–Plouffe 公式开始。它看起来是这个样子:

2015417114019059.png?2015317114032

在代码中我们可以这样编写它:

import sys

import math

from decimal import *

def bbp(n):

pi=Decimal(0)

k=0

while k < n:

pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))

k+=1

return pi

def main(argv):

if len(argv) !=2:

sys.exit('Usage: BaileyBorweinPlouffe.py ')

getcontext().prec=(int(sys.argv[1]))

my_pi=bbp(int(sys.argv[2]))

accuracy=100*(Decimal(math.pi)-my_pi)/my_pi

print"Pi is approximately "+str(my_pi)

print"Accuracy with math.pi: "+str(accuracy)

if __name__=="__main__":

main(sys.argv[1:])

抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

2015417114048612.png?201531711414

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样:

2015417114133666.png?2015317114147

我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):

def bellard(n):

pi=Decimal(0)

k=0

while k < n:

pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))

k+=1

pi=pi*1/(2**6)

return pi

2015417114158607.png?2015317114236

哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:

2015417114248773.png?201531711433

再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:

def chudnovsky(n):

pi=Decimal(0)

k=0

while k < n:

pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))

k+=1

pi=pi*Decimal(10005).sqrt()/4270934400

pi=pi**(-1)

return pi

2015417114314307.png?2015317114328

所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值