python 几何计算_【理解黎曼几何】6. 曲率的计数与计算(Python)

这篇博客介绍了黎曼曲率张量在几何计算中的重要性,特别是在2、3、4维空间中的独立分量计算。通过分析其对称性质,减少了计算复杂性。此外,文章提到了使用Python的SymPy库进行曲率张量的计算,尽管存在一些限制,但仍然是一个实用的工具。
摘要由CSDN通过智能技术生成

曲率的独立分量#

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义

$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$

定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到

$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\

&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\

&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\

&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0

\end{aligned} \tag{51} $$

前两个式子很快就告诉我们,如果$\beta=\gamma$或$\mu=\alpha$,那么$R_{\mu\alpha\gamma\beta}=0$,这是反对称的结果。下面的计数表明,独立分量的数目还可以以进一步减少。我们可以将每个等式看成一个约束,有一个约束,独立分量就减少1,我们要考虑有多少个独立的约束,来得出有多少个独立分量。

首先,$R_{\mu\alpha\beta\gamma}$可以看成一个$n\times n$矩阵(前两个指标),由这个矩阵的每个元素都是一个$n\times n$矩阵(后两个指标),由$R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}$可知,作为矩阵每个元素的矩阵,是一个反对称矩阵,因此只有$n(n-1)/2$个独立分量,而由$R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}$知道,作为矩阵的矩阵,它也是反对称的,因此也只有$n(n-1)/2$个独立分量,也就是说,根据前两个式子就可以知道总的独立分量数不超过$[n(n-1)/2]^2$。

接着,第三、第四个约束可以为我们进一步减少分量数目。$R_{\mu\alpha\beta\gamma}=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值