python朴素贝叶斯_python实现朴素贝叶斯

参考:《机器学习实战》- Machine Learning in Action

一、 基本思想

简单的说,用概率的高低来决定数据属于哪一类别,这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。朴素贝叶斯,则是在贝叶斯基础上做了一些最原始、最简单的假设。在朴素贝叶斯中,假设特征之间是相互独立的,比如假设a这个单词出现在am后的概率和出现在am前的概率是一样的。另外的一个假设是,每个特征同等重要。

二、 代码

背景:对文档进行贝叶斯分类,判断其是否属于侮辱性文档。

#-*- coding:utf8 -*-

from numpy import *

#原始数据,训练样本

def loadDataSet():

postingList = [

['my', 'dog', 'has', 'flea', 'problem', 'help', 'Please'],

['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],

['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],

['stop', 'posting', 'stupid', 'worthless', 'garbage'],

['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],

['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']

]

classVec = [0,1,0,1,0,1]

return postingList, classVec

#得到所有词的列表

def createVocabList(dataSet):

vocabSet = set([])

for document in dataSet:

vocabSet = vocabSet | set(document)

return list(vocabSet)

#某个文档的向量

def setOfWords2Vec(vocabList, inputSet):

returnVec = [0]*len(vocabList)

for word in inputSet:

if word in vocabList:

returnVec[vocabList.index(word)] = 1

else:

print "the word: %s is not in my Vocabulary!" % word

return returnVec

#训练函数0

def trainNB0(trainMatrix, trainCategory):

numTrainDocs = len(trainMatrix)

numWords = len(trainMatrix[0])

pAbusive = sum(trainCategory)/float(numTrainDocs)

p0Num = zeros(numWords)

p1Num = zeros(numWords)

p0Denom = 0.0

p1Denom = 0.0

for i in range(numTrainDocs):

if trainCategory[i] == 1:

plNum += trainMatrix[i]

plDenom += sum(trainMatrix)

else:

p0Num += trainMatrix[i]

p0Denom += sum(trainMatrix)

p0Vect = p0Num/p0Denom

p1Vect = p1Num/p1Denom

return p0Vect, p1Vect, pAbusive

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值