- 博客(18)
- 收藏
- 关注
原创 【论文阅读】Semisupervised Multiscale Generative AdversarialNetwork for Semantic Segmentation ofRemote S
许多方法都取得了令人惊叹的效果,但它们需要大量的标记图像来区分遥感数据集中小目标在角度、颜色、大小等方面的差异。然而,由于标记图像较少,难以提取小目标的关键特征。本文提出了一种半监督多尺度生成对抗网络(GAN),该网络不仅利用多路径输入和空间金字塔池(ASPP)模块,而且利用未标记图像和半监督学习策略,在标记数据量较小的情况下,提高了语义分割中小目标分割的性能。
2024-11-04 20:50:19
816
1
原创 【论文阅读】Land use classification of high resolution remote sensing images using an encoder based modifi
许多用于土地利用分类的深度学习模型需要更多的训练数据才能产生良好的分类性能,当训练样本数量欠缺时,它们的性能都会显著下降。
2024-11-04 16:44:04
805
1
原创 【论文阅读】Enabling country-scale land cover mapping with meter-resolution satelliteimagery
实验分为两部分:(1) 为探索不同土地覆盖分类方法的性能,本文在50亿像素上对三种代表性算法进行了基准测试,包括基于光谱空间特征的面向对象分类、基于深度学习的面向对象分类和基于深度学习的语义分割;本文与最近领先的和代表性的UDA方法进行了比较:AdaptSeg ,AdvEnt ,CLAN 和 FADA ,其中AdaptSeg和CLAN是基于对抗性的领域对齐方法,而AdvEnt和FADA结合了对抗性领域对齐和伪标签学习。为了使 DCNNs 适应一个新的领域,没有比拥有其特征分布的示例更好的方法了。
2024-11-04 15:28:26
933
1
原创 土地利用与土地覆盖分类(LULC)相关的深度学习论文、代码及数据集
本文介绍了一种使用 Shapley 加性解释 (SHAP) 进行遥感土地利用和土地覆盖 (LULC) 分类的可解释深度学习框架。它利用紧凑的卷积神经网络 (CNN) 模型对卫星图像进行分类,然后将结果输入到 SHAP 深度解释器以强化分类结果。所提出的框架应用于包含 27000 张像素大小为 64×64 的图像的 Sentinel-2 卫星图像,并对三波段组合进行操作,考虑到有 13 个可用通道,将模型的输入数据减少了 77%,同时研究了不同光谱带如何影响对数据集类别的预测。
2024-10-13 17:05:29
1873
原创 【论文阅读】Land Use and Land Cover Classification Meets Deep Learning:A Review
土地利用和土地覆盖,即 Land Use and Land cover(LULC。
2024-10-11 16:03:33
986
1
原创 【论文阅读】MAENet: Multiple Attention Encoder–Decoder Network for Farmland Segmentation of RS Images
本文提出了一种t)用于无人机图像农田分割。与其他语义分割方法相比,该方法可以有效地提取和融合特征,提高农田边缘的恢复。
2024-03-28 01:29:54
1036
3
原创 【论文阅读】A Generalization Sample Learning Method of Deep Learning for Semantic Segmentation of RS Image
基于深度学习的语义分割方法的性能与训练图像的数量和质量密切相关,因此本文提出了一种新的用于遥感图像语义分割的采样方法——,并将该策略集成到 CNN 方法中,提出框架来增强语义分割的结果。
2024-03-27 20:55:06
977
1
原创 【论文阅读】多源遥感协同的西南山地区耕地信息提取方法研究
本文针对我国西南山地的地形,提出了的耕地信息提取思路,结合了构建地块级时序特征,剔除获得结果中的非耕地类型,进一步优化提取结果。
2024-03-09 22:15:47
1685
1
原创 【论文阅读】GeoChat : Grounded Large Vision-Language Model for Remote Sensing
目前的大型视觉语言模型(VLMs)虽然能用于对给定的自然图像内容进行对话,但是这种通用领域的模型在遥感影像的场景中往往表现不佳,造成在遥感影像中特定查询时出现不准确或伪造的信息。为了解决这些问题,本文提出了第一个多功能遥感模型Geo Chat,将多模态指令调整扩展到遥感领域以训练多任务会话助手。
2024-02-18 18:55:41
1921
1
原创 论文写作课程总结
在撰写英文论文时,目前最主流的工具还是 Latex。对于审稿人来说,用 Latex 写的论文比用 Word 写的论文能够留下更好的印象。Latex 是一种基于 Tex 的排版系统,特别适用于处理复杂的数学公式、参考文献、图表和表格。对于计算机学生来说,用 Latex 来写论文更能得心应手,因为用户在用 Latex 写论文时更像是写代码、写程序,然后编译出最终的 pdf 文件。
2023-12-27 17:33:29
1989
1
原创 【论文阅读】Attention-based Deep Multiple Instance Learning
本文将MIL问题描述为学习包标签的伯努利分布,其中包标签的概率由神经网络完全参数化,并在此基础上提出了一种基于神经网络的与注意力机制相对应的排列不变聚合算子。
2023-08-05 18:14:21
877
1
原创 【代码复现】Bamic算法和BARTMIP算法
上方的红色实线中的点表示论文中的实验数据加上误差值,下方的红色虚线中的点表示论文中的实验数据减去误差值,每个k值对应的这两个点之间就是误差范围。从上图可以看出,本次代码跑出的结果中有四个点都在误差范围内,而另外两个点虽然在误差范围之外,但偏离得比较少,因此本次代码运行出的加权平均纯度和论文中的实验数据还是比较吻合的。将训练集中的每个训练包映射为一个与包的标签相关联的k维向量,向量中每个元素的值为该包到第i (1
2023-07-20 14:02:51
568
4
原创 【论文阅读】Multi-Instance Clustering with Applications to Multi-Instance Prediction
对于无标签的包的无监督多示例学习还没有研究,而本文则针对无监督多示例学习问题提出了解决方法。
2023-07-20 12:51:34
236
原创 机器学习算法之Apriori算法(python实现)
支持度衡量一个项集在数据集中出现的频率,定义为包含该项集的事务数目与总事务数的比例。置信度衡量关联规则的可靠性,定义为规则的支持度与规则左侧项集的支持度的比值。Apriori算法通过逐层搜索的方式逐渐生成更高阶的频繁项集,直到不能再生成新的频繁项集为止。Apriori算法的主要思想是利用频繁项集的性质,通过逐层搜索的方式发现频繁项集。1.初始扫描:计算单个项的支持度,筛选出满足最小支持度阈值的项集作为一阶频繁项集。3.频繁项集计数:对候选k阶项集进行扫描,计算每个项集的支持度。
2023-05-25 02:48:46
3874
1
原创 机器学习算法之CART分类树算法(python实现)
CART分类树的主要思想是通过递归地将数据集划分为更小的子集,使得每个子集内的样本属于同一类别。2.属性选择:计算每个属性的基尼指数,选择基尼指数最小的属性作为当前节点的划分标准。本次代码中的数据集我选用的是银行里的是否拖欠贷款的数据,每条数据的属性均包含是否有房、是否已婚、年薪是否超过80K、是否拖欠贷款,其中属性值为1表示是,属性值为0表示否。3.决策树构建:根据选择的属性将数据集划分为多个子集,每个子集对应一个分支。4.剪枝:若构建好的决策树分支过多,则可能需要对其进行剪枝操作,以减少过拟合的风险。
2023-05-25 02:25:46
1629
1
原创 机器学习算法之k-means算法(python实现)
K-means算法是一种常见的无监督学习算法,用于将一个数据集分成K个类别。K-means算法的基本思想是将数据集中的点分成K个类别,使得每个点到其所属类别的质心(即类别中心点)的距离最小。其中,K是事先设定的需要聚类的类别数目。本次算法代码中的数据集我选用西瓜数据集,其中第一列表示西瓜的密度,第二列表示西瓜的含糖率,接下来我要用k-means聚类算法把这30个西瓜分为3类。2.对于数据集中的每个点,计算其到K个聚类中心的距离,并将其归为距离最近的聚类中心所在的类别。
2023-05-11 05:05:05
521
1
原创 机器学习算法之朴素贝叶斯算法(python实现)
朴素贝叶斯算法(Naive Bayes,NB)是一种基于贝叶斯定理的分类算法,该算法认为样本属性之间相互独立,在文本分类、垃圾邮件过滤、情感分析等领域都有广泛的应用。朴素贝叶斯算法的基本思想是利用训练数据集中已知的类别信息,学习每个类别下各个属性出现的概率分布情况,然后利用贝叶斯公式计算待分类数据属于各个类别的概率,选择概率最大的类别作为预测结果。对于每一个P(Cj|x)来说,它的P(x)都相等,因此在代码中我直接比较P(x|Cj) * P(Cj)的大小来实现贝叶斯算法。
2023-05-11 04:41:14
1765
1
原创 机器学习算法之k-近邻算法(python实现)
K-近邻算法(K-Nearest Neighbors,KNN)是一种基本的分类和回归方法,它的基本思想是基于已有的样本数据集,对新的未知样本进行预测。对于一个未知的数据样本,k-近邻算法会在已有的样本数据集中找到与样本距离最近的k个数据点,然后选择这k个数据点中出现次数最多的标签作为最后的预测结果。本次算法的数据集我用的是鸢尾花数据集,共有150条数据。
2023-05-11 04:12:54
1162
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人