python人脸口罩识别检测_基于Python+OpenCV的人脸口罩识别检测

本文介绍了如何使用Python和OpenCV进行口罩人脸识别检测。首先,通过下载和处理人脸口罩数据集,调整图片像素,然后训练模型。训练过程包括创建样本文件、生成vec文件并训练级联分类器。最后展示了检测代码,对佩戴口罩进行标记。需要注意的是,识别精度受数据集大小影响,更多数据可提升模型性能。
摘要由CSDN通过智能技术生成

以下编程在Jupyter notbook平台上进行

目录

一、OpenCV下载安装

二、人脸口罩数据集下载处理

(一)人脸口罩数据集下载

(二)人脸口罩数据集的处理

三、训练人脸口罩数据集模型

四、进行人脸口罩检测

一、OpenCV下载安装

参考网址:

https://blog.csdn.net/cungudafa/article/details/84451066

二、人脸口罩数据集下载处理

(一)人脸口罩数据集下载

下载人脸口罩数据集的目的是利用OpenCV进行模型训练,这里采用口罩数据集的正负比列为1:3,即500张戴口罩的人脸图片和1500张不戴口罩的人脸图片。

链接:https://pan.baidu.com/s/11PBCmDDx7Dtx_ckjwZR2uw

提取码:n2um

解压之后,将压缩包中的mask文件自行选择文件夹放置,以便之后的操作。

(二)人脸口罩数据集的处理

1、将数据集重命名为连续序列

因为数据集中的图片序列是不连续的,因此这里需要编程将数据集的正负样本重命名为连续序列,以便像素调整。

重命名正样本序列Python代码:

#对数据集重命名

#coding:utf-8

import os

path = "D:\\facemask\\mask\\have_mask" #人脸口罩数据集正样本的路径

filelist = os.listdir(path)

count=1000 #开始文件名1000.jpg

for file in filelist:

Olddir=os.path.join(path,file)

if os.path.isdir(Olddir):

continue

filename=os.path.splitext(file)[0]

filetype=os.path.splitext(file)[1]

Newdir=os.path.join(path,str(count)+filetype)

os.rename(Olddir,Newdir)

count+=1

命名之后,正样本序列如下:

重命名负样本序列Python代码:

#对数据集重命名

#coding:utf-8

import os

path = "D:\\facemask\\mask\\no_mask" #人脸口罩数据集的路径

filelist = os.listdir(path)

count=10000 #开始文件名1000.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值