教材内容:教材81~82页的内容。
本节课的内容是在学生掌握了“倍”的基础上学习的,主要是为分数的大小比较和通分奠定基础。
复习旧知
1.因数和倍数的意义:
在a×b=c(a,b,c是不为0的自然数)中,a和b是c的因数,c是a和b的倍数。
2.找一个数的倍数的方法:
用这个数(非0自然数)和任意一个自然数(0除外)相乘,所得的积都是这个数的倍数。
知识与技能
1.理解公倍数和最小公倍数的意义。
2.会用列举法等方法找两个数的公倍数和最小公倍数。
过程与方法
通过圈一圈、看一看、说一说等活动,让学生经历探究找最小公倍数的过程,从而理解公倍数、最小公倍数的意义,培养学生自主发现问题、分析问题、解决问题的能力。
情感、态度与价值观
1.在学习活动中,感受数学知识的奥妙,激发学习数学知识的兴趣,培养热爱数学的良好情感。
2.结合生活实际,激发学生探究生活中数学问题的欲望,培养学生主动探究的意识。
重点:
理解公倍数和最小公倍数的意义,掌握找最小公倍数的方法。
难点:
能正确找出每组数的最小公倍数。
1 公倍数和最小公倍数的含义问题导入 在下表中用“○”标出4的倍数,用“△”标出6的倍数。(教材81页例题)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
1.分别找出4和6的倍数
方法一 先在表中用“○”标出4,然后每隔3个数再标出一个数,这些数都是4的倍数;再用同样的方法,在表中用“△”标出6,然后每隔5个数再标出一个数,这些数都是6的倍数。
方法二 根据求一个数倍数的方法,先用4分别乘1,2,3,4,5,…求出4的倍数,在表中用“○”标出;再用同样的方法,用6分别乘1,2,3,4,5,…求出6的倍数,在表中用“△”标出。如下图:
从表中可知:
50以内4的倍数有4,8,12,16,20,24,28,32,36,40,44,48。
50以内6的倍数有6,12,18,24,30,36,42,48。
2.明确公倍数和最小公倍数的含义
在表中既标有“○”又标有“△”的数是12,24,36,48。它们是4和6公有的倍数,也就是它们的公倍数,其中12是最小的一个,它是4和6的最小公倍数。
3.观察4和6的公倍数,发现公倍数的特征
(1)一个数的倍数的个数是无限的,因此两个数或三个数的公倍数的个数也是无限的,只有最小的公倍数,没有最大的公倍数。
(2)几个数的公倍数是这几个数最小公倍数的倍数,几个数的最小公倍数是这几个数的公倍数的因数。
例如:4和6的公倍数24是4和6的最小公倍数12的倍数,4和6的最小公倍数12是4和6的公倍数24的因数。
4.明确公倍数的表示方法
方法一 列举法。
4和6的公倍数有12,24,36,…
4和6的最小公倍数是12。
方法二 集合法。
几个数公有的倍数,叫作这几个数的公倍数。
其中最小的一个,叫作它们的最小公倍数。
2 求最小公倍数的方法问题导入 求10和15的最小公倍数。
1.探究求10和15的最小公倍数的方法
方法一 列举法。
(1)方法分析。
根据最小公倍数的含义,先找出10的倍数,再找出15的倍数,然后找出10和15的公倍数,最后从中找出最小公倍数。
(2)正确解答。
10和15的最小公倍数是30。
方法二 试除法。
(1)方法分析。
先写出15的倍数,再把15的倍数按从小到大的顺序依次除以较小数10,第一个能被10整除的数就是10和15的最小公倍数。
(2)正确解答。
15的倍数有15,30,45,60,75,…
15的倍数中是10的倍数的有30,60,…
10和15的最小公倍数是30。
2.特殊数的最小公倍数的求法
(1)成倍数关系的两个自然数的最小公倍数是较大数,例如:3和12的最小公倍数是12。
(2)只有公因数1的两个数的最小公倍数是这两个数的积,例如:7和9的最小公倍数是63。
归纳总结:求两个数的最小公倍数的方法:
(1)列举法:先分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数;
(2)试除法:先写出两个数中较大数的倍数,再把这些数按从小到大的顺序依次除以较小数,第一个能被较小数整除的数就是它们的最小公倍数。
拓展提高1.求三个或三个以上数的最小公倍数的方法,与求两个数的最小公倍数的方法相同,可以用列举法。
2.用短除法求两个数的最小公倍数。
例如:求18和24的最小公倍数。
找出18和24的公因数2,用2去除18和24,看它们的商是否只含有公因数1,如果只含有公因数1就不用再除了,如果除了1还有别的公因数就继续除,然后把除数和所得的商连乘起来就是18和24的最小公倍数。如下所示:
所以18和24的最小公倍数是2×3×3×4=72。
易错易混

误区一
填空:3和6的最小公倍数是(18)。
错解分析
3的倍数有3,6,9,12,15,18,…
6的倍数有6,12,18,…
6是3的倍数,所以6的所有倍数都是3的倍数。
错解改正 6
温馨提示
当较大数是较小数的倍数时,这两个数的最小公倍数就是较大数。

误区二
选择:两个数的最大公因数是1,最小公倍数是35,这两个数分别是(C)。
A.5和7 B.15和20 C.35和5
错解分析
虽然35和5的最小公倍数是35,但它们的最大公因数是5,不是1。
错解改正 A
温馨提示
解答此类问题,既要考虑最小公倍数,又要考虑最大公因数。
思考:
一些小朋友分组做游戏,第一次分组每组4人余下2人,第二次分组每组5人也余下2人。你知道最少有多少个小朋友做游戏吗?
觉得好看,请点这里↓↓↓