padding和卷积的区别_反卷积(Transposed Convolution)详细推导

本文详细介绍了反卷积(Transposed Convolution),包括其在图像上采样中的作用,数学推导,以及在Tensorflow中的实现。通过案例分析展示了反卷积如何改变输入输出尺寸,并强调反卷积并不能恢复数值,只能恢复尺寸。
摘要由CSDN通过智能技术生成

bb4933b7fbce027113a2082c014f4b6a.png

阅读本文的基础,是默认已经理解了图像处理中正向卷积的过程(卷积特征提取 - UFLDL)。


什么是反卷积?

  • 上采样(Upsample)

在应用在计算机视觉的深度学习领域,由于输入图像通过卷积神经网络(CNN)提取特征后,输出的尺寸往往会变小,而有时我们需要将图像恢复到原来的尺寸以便进行进一步的计算(e.g.:图像的语义分割),这个采用扩大图像尺寸,实现图像由小分辨率到大分辨率的映射的操作,叫做上采样(Upsample)。

  • 反卷积(Transposed Convolution)

上采样有3种常见的方法:双线性插值(bilinear),反卷积(Transposed Convolution),反池化(Unpooling),我们这里只讨论反卷积。这里指的反卷积,也叫转置卷积,它并不是正向卷积的完全逆过程,用一句话来解释:

反卷积是一种特殊的正向卷积,先按照一定的比例通过补
来扩大输入图像的尺寸,接着旋转卷积核,再进行正向卷积。

反卷积的数学推导

  • 正向卷积的实现过程

假设输入图像

尺寸为
,元素矩阵为:

卷积核

尺寸为
,元素矩阵为:

步长

,填充
,即

则按照卷积计算公式

,输出图像
的尺寸为
  • 用矩阵乘法描述卷积

的元素矩阵展开成一个列向量

把输出图像

的元素矩阵展开成一个列向量

对于输入的元素矩阵

和 输出的元素矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值