拉格朗日乘数法怎么判断极大极小_用拉格朗日乘数法求出极值后如何判断其是极大值还是极小值?...

事实上是有的。

但首先,由拉格朗日乘数法确定的点不一定是极值点,而仅仅是取极值的必要条件。对于这一点,我们对高中的一个常见例子加以改造即可说明:

设目标函数

equation?tex=f%28x%2Cy%29%3Dy ,约束条件

equation?tex=F%28x%2Cy%29%3Dx%5E3-y%3D0

构造拉格朗日函数:

equation?tex=L%28x%2Cy%2C%5Clambda%29%3Dy-%5Clambda%28x%5E3-y%29%3D%281%2B%5Clambda%29y-%5Clambda+x%5E3%5C%5C++ 分别求偏导得到可能取极值的点为

equation?tex=%28x_0%2Cy_0%29%3D%280%2C0%29 ,但是显然在这个点f不取极值,x可以任意大小,从而y也可以任意大小。

为究其原因,我们回忆这个例子的高中版本:设函数

equation?tex=f%28x%29%3Dx%5E3 ,当其导函数

equation?tex=f%5E%7B%5Cprime%7D%28x%29%3D3x%5E2 的零点是0,但是在此处f并不取极值,原因就是f的二阶导数6x在0的邻域内发生了变号。因此,为了取极值的充分条件,我们还需要考察二阶导数,而这在高维空间之中也有相似之处。

下面列出条件极值问题如何判断可以点是否为极值点,以及是极大还是极小值点的法则,亦即条件极值的充分条件。有关的证明和解说我周六考完试回来就补。定理. 设

equation?tex=f%3A+D%5Crightarrow+%5Cmathbb%7BR%7D 是定义在开集

equation?tex=D%5Csubset+%5Cmathbb%7BR%7D%5En 上并且属于

equation?tex=C%5E%7B%282%29%7D%28D%3B%5Cmathbb%7BR%7D%29 类的函数,

equation?tex=S 由约束方程组

equation?tex=%5Cbegin%7Bcases%7D+F_1%28x_1%2C%5Ccdots%2Cx_n%29%3D0%5C%5C+%5Cvdots%5C%5C+F_m%28x_1%2C%5Ccdots%2Cx_n%29%3D0+%5Cend%7Bcases%7D 所给出的

equation?tex=D 中的曲面,其中

equation?tex=F%5E%7B%28i%29%7D%5Cin+%28D%3B%5Cmathbb%7BR%7D%29 ,

equation?tex=i%3D1%2C2%2C%5Ccdots%2Cm ,并且函数组

equation?tex=%5Cleft%5C%7B+F_1%2C%5Ccdots%2CF_m+%5Cright%5C%7D

equation?tex=D 中的任何点的秩都等于

equation?tex=m 。 设拉格朗日函数

equation?tex=L%28x%2C%5Clambda%29%3Df%28x_1%2C%5Ccdots%2Cx_n%29-%5Csum_%7Bi%3D1%7D%5E%7Bm%7D%7B%5Clambda_%7Bi%7DF_i%28x_1%2C%5Ccdots%2Cx_n%29%7D%5C%5C 中的参数已经根据取极值的必要条件求出,则此时:

如果二次型

equation?tex=%5Cfrac%7B%5Cpartial%5E%7B2%7DL%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%5Cxi_%7Bi%7D%5Cxi_%7Bj%7D%5C%5C

对于向量

equation?tex=%5Cxi+%5Cin+TS_%7Bx_0%7D (TSx0是曲面S在x0点出的切空间)具有确定的符号,则点

equation?tex=x_0 是函数

equation?tex=f%7C_%7BS%7D 的极值点。

并且,如果上述二次型在

equation?tex=TS_%7Bx_0%7D 上正定,则

equation?tex=x_0 是局部严格极小值点。反之为局部严格极大值点。如果二次型在

equation?tex=TS_%7Bx_0%7D 上发生变好,则

equation?tex=x_0 不是极值点。

我回来了,现在开始证明:

上述定理之中,涉及到曲面的切空间这个概念,因此,有必要对此概念进行介绍。

首先回顾三维空间中的曲线,我们将其看作一个质点的运动轨迹,那么它的三个坐标xyz都可以表达成时间的函数

equation?tex=x%28t%29%2Cy%28t%29%2Cz%28t%29 ,那么在某个时刻

equation?tex=t_0 曲线的切线的方向就是该质点的速度方向,方向向量为

equation?tex=%5Cxi%3D%5Cleft%5C%7B+x%5E%7B%5Cprime%7D%28t_0%29%2Cy%5E%7B%5Cprime%7D%28t_0%29%2Cz%5E%7B%5Cprime%7D%28t_0%29+%5Cright%5C%7D,不妨设t0=0,则曲线的切线可以表示为:

equation?tex=x-x_0%3Dx%5E%7B%5Cprime%7D%280%29t 此处x包含了xyz三个坐标分量,简记为一个点x。

类比空间中的参数曲线和其切线,可以大致构思出空间的参数曲面表示和其切空间的概念。试想上述曲线只有一个参数t1,假设有另一个参数t2,那么当t2变化是它描述出另一条曲线。综合t1,t2,固定t1,t2变化时就画出了一族曲线,同样的,固定t2,t1变化是也画出一族曲线,那么这些曲线就在空间中“织成了一张网”,当曲线连续变化的时候,就描述出了一个空间中的曲面。从映射的角度,我们由参数集合

equation?tex=%28t_1%2Ct_2%2C%5Ccdots%2Ct_k%29%5Cin+I%5E%7Bk%7D 映射到了空间集合

equation?tex=%28x_1%2Cx_2%2C%5Ccdots%2Cx_n%29%5Cin+%5Cmathbb%7BR%7D%5En 之中。

但是请注意,曲面的确可以用这种参数形式来表示,但是上述的概念的提出并不是一个严谨的定义。例如,在实现t坐标转化的x坐标的过程中,你能否保证x坐标能够转化回去t坐标呢?就比如直角坐标和极坐标的互化一样。如果不存在这种互化,那是无法保证你在两种坐标体系下描述的是同一个对象。换言之,必须要保证上述的映射对于整个曲面来说,都是双射。事实上这背后确实有参数曲面的严谨定义,它由反函数定理所保证。但是此处我一来还没有完全悟透,而来对定理的证明暂无大碍,故暂且采取如此简单直观但不够严谨的解释。

有了参数曲面的概念,联系曲线的切线的概念,曲面在某点的切空间其实就是此点所有线性无关的切向量所张成的空间。用坐标形式写出来就是如下的方程组:

equation?tex=%5Cbegin%7Bcases%7D++x_1-x_0%3D%5Cfrac%7B%5Cpartial+x_1%7D%7B%5Cpartial+t_1%7D%280%29t_1%2B%5Ccdots%2B%5Cfrac%7B%5Cpartial+x_1%7D%7B%5Cpartial+t_k%7D%280%29t_k%5C%5C++%5Cvdots+%5C%5C+x_n-x_0%3D%5Cfrac%7B%5Cpartial+x_n%7D%7B%5Cpartial+t_1%7D%280%29t_1%2B%5Ccdots%2B%5Cfrac%7B%5Cpartial+x_n%7D%7B%5Cpartial+t_k%7D%280%29t_k++%5Cend%7Bcases%7D+%5C%5C 利用矩阵可以写成更为简洁的形式:

equation?tex=%5CDelta%5Ctextbf%7Bx%7D%3D%5Ctextbf%7Bx%7D%5E%7B%5Cprime%7D%280%29%5Ctextbf%7Bt%7D .

现在可以开始证明原定理:

首先由于对于拉格朗日函数:

equation?tex=L%28x%2C%5Clambda%29%3Df%28x_1%2C%5Ccdots%2Cx_n%29-%5Csum_%7Bi%3D1%7D%5E%7Bm%7D%7B%5Clambda_%7Bi%7DF_i%28x_1%2C%5Ccdots%2Cx_n%29%7D%5C%5C 后面的约束条件全是0,因此欲求f的极值只要求L的极值,在根据极值取得的必要条件(就是偏导数等于0那个:

equation?tex=%5Cmathrm%7Bgrad%7D%5C%2C+L%28x_0%29%3D0 )求解出

equation?tex=%5Clambda 之后,

equation?tex=L%28x%2C%5Clambda%29%3DL%28x%29 ,那么在点

equation?tex=x_0 处,我们可以对L(x)作泰勒展开:

equation?tex=L%28x%29-L%28x_0%29%3D%5Cfrac%7B1%7D%7B2%21%7D%5CDelta+xQ%5CDelta+x%5ET%2Bo%28%7C%7Cx-x_0%7C%7C%5E2%29%2C%5Cqquad+x%5Crightarrow+x_0%5C%5C 其中,

equation?tex=%5CDelta+x%3D%28x_i-x_%7Bi_0%7D%29%2C%5C%2C%5C%2CQ%3D%5Cleft%28+%5Cfrac%7B%5Cpartial%5E2L%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D+%5Cright%29 ,Q称为hesse矩阵。为了书写方便,我们只取其中的一项的一般形式来表示所有项:

equation?tex=+%5Cfrac%7B1%7D%7B2%21%7D+%5Cfrac%7B%5Cpartial%5E2L%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%28x_i-x_%7Bi_0%7D%29%28x_j-x_%7Bj_0%7D%29%2Bo%28%7C%7Cx-x_0%7C%7C%5E2%29+%2C%5Cqquad+x%5Crightarrow+x_0+%5C%5C 利用上文提到的参数形式,由

equation?tex=%5CDelta%5Ctextbf%7Bx%7D%3D%5Ctextbf%7Bx%7D%5E%7B%5Cprime%7D%280%29%5Ctextbf%7Bt%7D 得:

equation?tex=x_i-x_%7Bi_0%7D%3Dx_i%28t%29-x_i%280%29%3D%5Cfrac%7B%5Cpartial+x_i%7D%7B%5Cpartial+t+%5E+%5Calpha%7D%280%29t_%5Calpha+%2Bo%28%7C%7Ct%7C%7C%29%5C%5C 其中,α从1到k遍历取值。将此式代入上面的一般项得到:

equation?tex=%5Cbegin%7Bsplit%7D+%26%5Cfrac%7B1%7D%7B2%21%7D+%5Cfrac%7B%5Cpartial%5E2L%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%28x_i-x_%7Bi_0%7D%29%28x_j-x_%7Bj_0%7D%29%2Bo%28%7C%7Cx-x_0%7C%7C%5E2%29%5C%5C+%3D%26%5Cfrac%7B1%7D%7B2%21%7D+%5Cfrac%7B%5Cpartial%5E2L%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%5Cleft%28+%5Cfrac%7B%5Cpartial+x_i%7D%7B%5Cpartial+t+_+%5Calpha%7D%280%29t_%5Calpha+%2Bo%28%7C%7Ct%7C%7C%29%5Cright%29%5Cleft%28+%5Cfrac%7B%5Cpartial+x_j%7D%7B%5Cpartial+t+_+%5Cbeta%7D%280%29t_%5Cbeta+%2Bo%28%7C%7Ct%7C%7C%29%5Cright%29%2Bo%28%7C%7Ct%7C%7C%5E2%29%5C+%5C%5C%3D%26%5Cfrac%7B1%7D%7B2%21%7D+%5Cfrac%7B%5Cpartial%5E2L%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%5Cfrac%7B%5Cpartial+x_i%7D%7B%5Cpartial+t+_+%5Calpha%7D%280%29%5Cfrac%7B%5Cpartial+x_j%7D%7B%5Cpartial+t+_+%5Cbeta%7D%280%29t_%5Cbeta+t_%5Calpha%2Bo%28%7C%7Ct%7C%7C%5E2%29%2C%5Cqquad+t%5Crightarrow+0+%5Cend%7Bsplit%7D 对于上述二次型,

equation?tex=%5Cbegin%7Bsplit%7D++%5Cend%7Bsplit%7D 由于它是连续函数,则在曲面上一定存在最大最小值,不妨设为M,m。当其具有确定的符号时,不妨设为正号则m>0,负号的情况是类似的:

因为o是无穷小量,那么当t足够靠近0得时候,这个o会足够的小直到其绝对值比m还要小,那么当t处于这样的一个范围时就可以保证上述式子为正,即:

equation?tex=L%28x%29-L%28x_0%29%3E0 ,这说明x0是严格极小值点。

但是,定理中的二次型不是

equation?tex=%5Cfrac%7B%5Cpartial%5E%7B2%7DL%7D%7B%5Cpartial+x_i%5Cpartial+x_j%7D%28x_0%29%5Cxi_%7Bi%7D%5Cxi_%7Bj%7D 这个吗?好像形式不一样?事实上,这两个式子只是同一对象的不同表述:如果

equation?tex=%5Cxi 是切向量,则

equation?tex=%5Cxi 满足:

equation?tex=%5Cxi%3Dx%5E%7B%5Cprime%7D%280%29t .那么对于

equation?tex=%5Cxi%3D%28%5Cxi_1%2C%5Ccdots%2C%5Cxi_n%29 之中的一个分量

equation?tex=%5Cxi_i 有:

equation?tex=%5Cxi_i%3D%5Cfrac%7B%5Cpartial+x_i%7D%7B%5Cpartial+t+_+%5Calpha%7D%280%29t_%5Calpha+ 成立。这说明定理中的二次型只是证明中需要判断符号的那个二次型的一个简写,它们是同一个东西。至此,定理证毕。

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多元函数的条件极值问题,可以使用拉格朗日乘子来求解。具体步骤如下: 1. 设 $f(x_1,x_2,...,x_n)$ 为目标函数,$g_1(x_1,x_2,...,x_n),g_2(x_1,x_2,...,x_n),...,g_m(x_1,x_2,...,x_n)$ 为约束条件。 2. 构造拉格朗日函数 $L(x_1,x_2,...,x_n,\lambda_1,\lambda_2,...,\lambda_m)=f(x_1,x_2,...,x_n)+\sum_{i=1}^m\lambda_i g_i(x_1,x_2,...,x_n)$。 3. 求解方程组 $\frac{\partial L}{\partial x_i}=0$ 和 $\frac{\partial L}{\partial \lambda_i}=0$,得到所有的极值点和极值。 4. 利用极值第二充分条件判断每个极值点是否为极小值极大值极值第二充分条件是:设 $x_0$ 为极值点,如果二次偏导数 $\frac{\partial^2L}{\partial x_i^2}(x_0)$ 的行列式为正,则 $x_0$ 是极小值点;如果二次偏导数的行列式为负,则 $x_0$ 是极大值点;如果行列式为零,则需要进行进一步的判断。 下面是利用 MATLAB 求解多元函数的条件极值的例子: 假设有函数 $f(x,y)=x^2+y^2-2x$,满足约束条件 $g(x,y)=x+y-1=0$,求其条件极值。 解题步骤如下: 1. 构造拉格朗日函数 $L(x,y,\lambda)=f(x,y)+\lambda g(x,y)=x^2+y^2-2x+\lambda(x+y-1)$。 2. 求解方程组 $\frac{\partial L}{\partial x}=0$,$\frac{\partial L}{\partial y}=0$,$\frac{\partial L}{\partial \lambda}=0$,得到: $$ \begin{cases} 2x-2+\lambda=0 \\ 2y+\lambda=0 \\ x+y-1=0 \end{cases} $$ 解得 $x=1-\frac{\lambda}{2}$,$y=-\frac{\lambda}{2}$,代入约束条件中得到 $\lambda=-2$,$x=2$,$y=-1$。 3. 计算二次偏导数,得到: $$ \frac{\partial^2L}{\partial x^2}=2,\quad \frac{\partial^2L}{\partial x\partial y}=1,\quad \frac{\partial^2L}{\partial y^2}=2 $$ 行列式为 $3>0$,因此 $(2,-1)$ 是极小值点。MATLAB 代码如下: ```matlab syms x y lambda f = x^2 + y^2 - 2*x; g = x + y - 1; L = f + lambda*g; grad_L = [diff(L,x);diff(L,y);diff(L,lambda)]; [x_sol,y_sol,lambda_sol] = solve(grad_L==0,g==0,x,y,lambda); H = hessian(L,[x,y,lambda]); det_H = det(H([1,2],[1,2])); if det_H > 0 disp('The point is a local minimum.'); elseif det_H < 0 disp('The point is a local maximum.'); else disp('The test is inconclusive.'); end ``` 输结果为:The point is a local minimum.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值