python 人脸检测_用python库face_recognition进行人脸识别

1.pip install opencv

2.pip install face_recognition

3.通过摄像头实时在获取的帧上进行人脸识别(较卡顿)

facerecognition.py

# -*- coding: UTF-8 -*-

import face_recognition

import cv2

import os

import ft2

#中文支持,加载微软雅黑字体

ft = ft2.put_chinese_text('msyh.ttf')

# 获取摄像头# 0(默认)

video_capture = cv2.VideoCapture(0)

# 加载待识别人脸图像并识别。

basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中

baseface_titles=[] #图片名字列表

baseface_face_encodings=[] #识别所需人脸编码结构集

#读取人脸资源

for fn in os.listdir(basefacefilespath): #fn 人脸文件名

baseface_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file(basefacefilespath+"/"+fn))[0])

fn=fn[:(len(fn)-4)]

baseface_titles.append(fn)#

while True:

# 获取一帧视频

ret, frame = video_capture.read()

# 人脸检测,并获取帧中所有人脸编码

face_locations = face_recognition.face_locations(frame)

face_encodings = face_recognition.face_encodings(frame, face_locations)

# 遍历帧中所有人脸编码

for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):

# 与baseface_face_encodings匹配否?

for i,v in enumerate(baseface_face_encodings):

match = face_recognition.compare_faces([v], face_encoding,tolerance=0.5)

name = "?"

if match[0]:

name = baseface_titles[i]

break

name=unicode(name,'gb2312')#gbk is also ok.

print(name)

# 围绕脸的框

cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

# 框下的名字(即,匹配的图片文件名)

cv2.rectangle(frame, (left, bottom), (right, bottom+35), (0, 0, 255), cv2.FILLED)

frame = ft.draw_text(frame, (left + 2, bottom + 12), name, 16, (255, 255, 255))

# show结果图像

cv2.imshow('Video', frame)

# 按q退出

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# 释放摄像头中的流

video_capture.release()

cv2.destroyAllWindows()

ft2.py

# -*- coding: utf-8 -*-

import numpy as np

import freetype

import copy

import pdb

class put_chinese_text(object):

def __init__(self, ttf):

self._face = freetype.Face(ttf)

def draw_text(self, image, pos, text, text_size, text_color):

'''

draw chinese(or not) text with ttf

:param image: image(numpy.ndarray) to draw text

:param pos: where to draw text

:param text: the context, for chinese should be unicode type

:param text_size: text size

:param text_color:text color

:return: image

'''

self._face.set_char_size(text_size * 64)

metrics = self._face.size

ascender = metrics.ascender/64.0

#descender = metrics.descender/64.0

#height = metrics.height/64.0

#linegap = height - ascender + descender

ypos = int(ascender)

if not isinstance(text, unicode):

text = text.decode('utf-8')

img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color)

return img

def draw_string(self, img, x_pos, y_pos, text, color):

'''

draw string

:param x_pos: text x-postion on img

:param y_pos: text y-postion on img

:param text: text (unicode)

:param color: text color

:return: image

'''

prev_char = 0

pen = freetype.Vector()

pen.x = x_pos << 6 # div 64

pen.y = y_pos << 6

hscale = 1.0

matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\

int(0.0*0x10000L), int(1.1*0x10000L))

cur_pen = freetype.Vector()

pen_translate = freetype.Vector()

image = copy.deepcopy(img)

for cur_char in text:

self._face.set_transform(matrix, pen_translate)

self._face.load_char(cur_char)

kerning = self._face.get_kerning(prev_char, cur_char)

pen.x += kerning.x

slot = self._face.glyph

bitmap = slot.bitmap

cur_pen.x = pen.x

cur_pen.y = pen.y - slot.bitmap_top * 64

self.draw_ft_bitmap(image, bitmap, cur_pen, color)

pen.x += slot.advance.x

prev_char = cur_char

return image

def draw_ft_bitmap(self, img, bitmap, pen, color):

'''

draw each char

:param bitmap: bitmap

:param pen: pen

:param color: pen color e.g.(0,0,255) - red

:return: image

'''

x_pos = pen.x >> 6

y_pos = pen.y >> 6

cols = bitmap.width

rows = bitmap.rows

glyph_pixels = bitmap.buffer

for row in range(rows):

for col in range(cols):

if glyph_pixels[row*cols + col] != 0:

img[y_pos + row][x_pos + col][0] = color[0]

img[y_pos + row][x_pos + col][1] = color[1]

img[y_pos + row][x_pos + col][2] = color[2]

if __name__ == '__main__':

# just for test

import cv2

line = '你好'

img = np.zeros([300,300,3])

color_ = (0,255,0) # Green

pos = (3, 3)

text_size = 24

#ft = put_chinese_text('wqy-zenhei.ttc')

ft = put_chinese_text('msyh.ttf')

image = ft.draw_text(img, pos, line, text_size, color_)

cv2.imshow('ss', image)

cv2.waitKey(0)

将msyh.ttf 微软雅黑字体文件copy到同级目录,在同级images文件夹下,以人名命名正面脸图.

运行, python facerecognition.py

卡顿,跳帧,

结果如图:

base faces

8065fc87-64a2-36ad-bd1d-283b743e78b3.png

识别:

e888b7c0-dc54-3dfd-93c9-0c3e8cec5fc9.jpg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Android 项目是使用 Android 操作系统和相关开发工具开发的一款移动应用程序。Android 平台提供了丰富的功能和接口,开发人员可以使用 Java 或 Kotlin 等编程语言编写 Android 应用程序。Android 项目也可以是针对特定设备或特定需求进行自定义开发的软件解决方案。 以下是 Android 项目的一些主要特点和资料介绍: 1. 开放源代码:Android 是基于 Linux 内核的开源操作系统,开发人员可以自由获取、使用和修改源代码。 2. 多样化的硬件设备支持:Android 支持多种硬件设备和屏幕尺寸,可以运行于手机、平板电脑、电视、手表等多种设备上。 3. 灵活的用户界面:Android 提供了丰富的用户界面控件和布局方式,可以实现漂亮、个性化的用户界面。 4. 响应式设计:Android 应用程序可以根据设备类型、屏幕尺寸等因素调整布局和显示方式,以适应不同的设备和用户需求。 5. 多媒体支持:Android 支持常见的音频、视频、图像等多媒体格式,可以实现各种多媒体应用。 6. 数据存储:Android 提供了多种数据存储方式,包括 SQLite 数据、文件存储、SharedPreferences 等。 7. 网络通信:Android 支持多种网络通信方式,包括 HTTP、TCP、UDP 等。 8. 社交媒体集成:Android 提供了集成社交媒体的功能,可以实现与 Facebook、Twitter、Google+ 等社交媒体的交互。 # 注意 1. 本资源仅用于开源学习和技术交流。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。 3. 不可商用,一切后果由使用者承担。
下面是一个基于Python的OpenCV和face_recognition的简单人脸识别代码示例: ```python import cv2 import face_recognition # 加载已知的人脸图像和对应的名字 obama_image = face_recognition.load_image_file("obama.jpg") obama_face_encoding = face_recognition.face_encodings(obama_image)[0] biden_image = face_recognition.load_image_file("biden.jpg") biden_face_encoding = face_recognition.face_encodings(biden_image)[0] known_face_encodings = [ obama_face_encoding, biden_face_encoding ] known_face_names = [ "Barack Obama", "Joe Biden" ] # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取一帧图像 ret, frame = cap.read() # 转换为RGB图像 rgb_frame = frame[:, :, ::-1] # 检测人脸 face_locations = face_recognition.face_locations(rgb_frame) face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) # 遍历每个检测到的人脸 for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): # 判断是否和已知人脸匹配 matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # 如果匹配到了已知人脸,则获取对应的名字 if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] # 在图像上绘制人脸矩形和名字 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # 显示图像 cv2.imshow('Video', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和窗口资源 cap.release() cv2.destroyAllWindows() ``` 注意,这个代码示例需要在已经安装了face_recognition和OpenCVPython环境中运行,还需要把`obama.jpg`和`biden.jpg`两个已知人脸图像放在代码所在目录下。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值