nxn次方求和函数_生成函数(母函数)详解 - Jijidawang

这篇博客深入探讨了生成函数在解决组合数学问题中的应用,包括普通生成函数(OGF)和指数生成函数的概念、性质及计算技巧。通过广义二项式定理和双阶乘的介绍,博主展示了如何利用生成函数求解Fibonacci数列和Catalan数列的通项公式。此外,还提供了几个实例,如默慈金数和特定食物组合问题,来说明生成函数在实际问题中的解决能力。
摘要由CSDN通过智能技术生成

0. 前置

1. 广义二项式定理(牛顿二项式定理)

我们重新定义组合数:

\[\dbinom rk=\dfrac{r^{\underline{k}}}{k!} \]

其中 \(r^{\underline{k}}\) 是下降幂,\(r\in\mathbb C,k\in\mathbb N\) .

注意 \(r\in\mathbb C\) . 在这种情况下,对于任意 \(\alpha\in\mathbb C\),有:

\[(1+x)^{\alpha}=\sum_{n\ge 0}\dbinom{\alpha}{n}x^n \]

2. 双阶乘

\(n\in\mathbb N_+\) 时,\(n\) 的双阶乘(\(n!!\))表示不超过 \(n\) 且与 \(n\) 有相同奇偶性的所有正整数的乘积。

\[(2n)!!=2\times 4\times 6\times\cdots\times (2n) \]

\[(2n-1)!!=1\times 3\times 5\times\cdots\times (2n-1) \]

显然有递推式 \((n-2)!!n=n!!\),由此可以推导出:

\[(-2n-1)!!=\dfrac{(-1)^n}{|-1|\cdot|-3|\cdot|-5|\cdots\cdot|-2n+1|} \]

\[(-2n)\not\in \mathbb R \]

对于双阶乘有如下恒等式:

\[(2n)!!(2n-1)!!=(2n)! \]

\[(2n+1)!!(-2n-1)!!=(-1)^n(2n+1) \]

1. 形式幂级数的定义及基础运算(可略)

定义 形式幂级数(以下简称幂级数)为一个形如 \(a_0+a_1x+a_2x^2+\cdots\) 形式的表达式。(注意:这里只是形式,不需要在意它表示什么),序列 \(\{a_n\}\) 称之为它的 系数序列。称两个幂级数 相等 当且仅当它们的系数序列相同。

67824299f0e61a1c27b14eccf1b8857a.png

为简便,记 \([x^n]f(x)\) 表示幂级数 \(f\)\(n\) 次项系数。另外,也用 \(f(0)\) 表示 \(f\)\(0\) 次项系数。

我们可以对其做一些运算,例如 加法减法。其定义是:

\[\sum_na_nx^n\pm\sum_nb_nx^n=\sum_n(a_n\pm b_n)x^n \]

幂级数的乘法由卷积来定义,即:

\[\left(\sum_na_nx^n\right)\cdot\left(\sum_nb_nx^n\right)=\sum_n c_nx^n \]

其中

\[c_n=\sum_k a_kb_{n-k} \]

现在你可以验证其满足各种我们所熟知的规律,比如加法交换律、加法结合律、乘法交换/结合律、乘法分配律等等(因此它们构成了一个环)。这些都很简单。

等下,说好的四则运算呢?还差一个除法 \(\cdots\) 显然要定义除法,只需要定义逆元即 \(f^{-1}\)。但是有些幂级数是不可能有逆元的,比如首项系数为 \(0\) 的幂级数。事实上这也是充要条件,即

幂级数 \(f(x)=\sum_n a_nx^n\) 存在逆元当且仅当 \(a_0\neq 0\)

Proof:

必要性显然,因为若 \(a_0=0\) 那么 \(f\) 与任意幂级数的乘积的零次项系数都是 \(0\) .

\(f^{-1}=\sum_n b_nx^n\),那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值