nx^n求和

0<x<1

解1

\sum_{n=1}^{\infty}nx^n=x+2x^2+3x^3+...+xn^n    ①

x\sum_{n=1}^{\infty}nx^n=x^2+2x^3+3x^4+...+x^{n+1}    ②

①-②:

(1-x)\sum_{n=1}^{\infty}nx^n=x+x^2+x^3+x^4+...+x^n-x^{n+1}=\sum_{n=1}^{\infty}x^n=\frac{x}{1-x}

\sum_{n=1}^{\infty}nx^n=\frac{x}{(1-x)^2}

 

解2

\sum_{n=0}^\infty x^n=\frac{1}{1-x}

由于级数收敛,所以

\sum_{n=0}^\infty nx^{n-1}=\sum_{n=0}^\infty \frac{d}{dx}x^n=\frac{d}{dx}\sum_{n=0}^\infty x^n=\frac{d}{dx}\frac{1}{1-x}=\frac{1}{\left(1-x\right)^2}

两边同乘x

\sum_{n=0}^\infty nx^{n}=\frac{x}{\left(1-x\right)^2}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值