kaggle数据集汇总_超全的3D视觉数据集汇总

这篇博客汇总了多个重要的3D视觉数据集,包括KITTI、Cityscapes、ApolloScape等,涵盖了自动驾驶、3D重建和物体扫描等多个领域。每个数据集的特点和应用场景都有所介绍,对于从事相关研究和开发的人员极具参考价值。
摘要由CSDN通过智能技术生成

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~

1、 KITTI数据集

KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。 该数据集用于评测立体图像(stereo),光流(optical flow),视觉测距(visual odometry),3D物体检测(object detection)和3D跟踪(tracking)、语义分割等计算机视觉技术在车载环境下的性能。 KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。 整个数据集由389对立体图像和光流图,39.2 km视觉测距序列以及超过200k 3D标注物体的图像组成。 数据集链接: http://www.cvlibs.net/datasets/kitti/raw_data.php d19f0d9b-6e15-eb11-8da9-e4434bdf6706.png

2、Cityscapes

Cityscapes是一个较为新的大规模数据集,它包含50个不同城市的街道场景中记录的各种立体视频序列,除了一组较大的20 000弱注释帧外,还具有5 000帧的高质量像素级注释。 因此,数据集比以前的类似尝试要大一个数量级。 Cityscapes数据集旨在评价视觉算法在城市场景语义理解中的性能: 像素级、实例级和全景语义标注; 支持旨在开发大量(弱)注释数据的研究,例如用于训练深层神经网络包含城市场景下双目图像及像素级语义分割标注。 数据集链接: https://www.cityscapes-dataset.com/ d49f0d9b-6e15-eb11-8da9-e4434bdf6706.png

3、牛津数据集

对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据。 包含全景图像、激光雷达点云、导航信息。 数据集链接: https://robotcar-dataset.robots.ox.ac.uk/datasets/ da9f0d9b-6e15-eb11-8da9-e4434bdf6706.png

4、Apollo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值