ARARX模型的辨识算法
Homework
Recursive extended least squares identification
In this section, I focus on the following ARMAX model
where {} and {} are respectively input and output series, is white noise, and are some polynomials with respect to the backward operator :
, , and for t ≤ 0.
I use the residual based recursive extened least squares algorithm.
The procedure of MATLAB:
clc;clear all;
t=500;
for k=1:t
u(k)=1;
end
v=randn(1,t)/100;
y(1)=v(1);y(2)=1.5*y(1)+0.5*u(1)+v(2)-v(1);
y(3)=1.5*y(2)-0.7*y(1)+0.5*u(1)+u(2)+v(3)-v(2)+0.2*v(1);
for k=4:t
y(k)=1.5*y(k-1)-0.7*y(k-2)+u(k-1)+0.5*u(k-2)+v(k)-v(k-1)+0.2*v(k-2);
end
s=zeros(6,t);
q=zeros(6,t);
p=100000*eye(6);
v1=zeros(