1、先明白需求
数据分析及运营管理是一种数据驱动的能力,而并非仅仅学学Python或者SQL这么简单。
当然,我能理解你的意思,想学习数据分析工具。
Python和SQL各有所长,搭配使用是最好的。2、如何选择
我的建议是先学习SQL,再学习Python。
说说为什么?
互联网企业的核心资产,说到底就是数据。
职场中,哪怕是非技术的产品、运营岗,也会有和数据库打交道的时候。
而SQL是一门专门用来管理、查询数据库的语言,无论是传统的关系型数据库像oracle、mysql,还是云存储、大数据,都离不开SQL。
数据存储方式日新月异,各种数据库层出不穷,SQL却是永恒的。
在职场非IT工具中,除了excel、ppt,我相信SQL算是最能给你加分的了。
Python现在确实太火了,咱们不跟风,抛开网上对python的无脑吹。
单独就作为数据分析语言来说,Python是值得投入时间学习的。
当然学习python,并不仅仅是学它的语法,还要学习使用各种它衍生出的数据分析库。
像pandas、numpy、scipy、sikit-learn、statemodels...
这些工具形成一个强大的数据分析生态,帮助你玩转各种大小数据。
3、理解差异
SQL擅长在数据库端进行数据的整理、查询、分析,非常简洁高效,独此一家。
但SQL的长处不在于分析,也就是说如果你想建模分析、做复杂的数据探索,那么SQL就有点力不从心。
而Python的长处就在于集成了各种数据分析方法,能完成复杂的数据准备、建模工作。
综上而言,如果你想get数据技能,SQL和Python一起学习,会让你插上双翅,快乐飞翔。