俗话说,授人以鱼不如授人以渔。本文详细介绍了16种智能算法改进策略,包括飞行游走策略如莱维飞行、随机游走等,以及变异策略如高斯变异和动态反向学习。
作者通过实例演示如何将这些策略应用于经典粒子群算法,以便读者理解和迁移。通过学习这些策略,读者可以更好地理解和改进其他智能优化算法,实现算法自由。
智能算法的改进作为一个创新点,网上关于智能算法改进的论文不计其数!但是,如果细数改进策略!也是能够数的过来的,为此文章通过查阅文献发现算法改进策略主要为以下16种算法改进策略:
①莱维飞行,②随机游走,③螺旋飞行,④高斯随机游走,⑤三角形游走,⑥高斯变异,⑦t分布扰动变异,⑧自适应t分布扰动变异,⑨柯西变异,⑩差分变异。⑪透镜成像反向学习⑫动态反向学习⑬正余弦⑭黄金正弦⑮自适应收敛因子⑯纵横交叉
为了方便大家对于策略代码编写的学习和移植,小编将以上16种改进策略全部用于经典的粒子群算法。因此只要你理解了经典的粒子群算法,再与改进的粒子群算法进行对比,那么你就能马上理解这些策略是如何运用于智能优化算法进行所谓的智能算法改进。举一反三,大家自然而然也就会改进其他算法了,也可以自行进行智能算法改进。
以粒子群算法(PSO)算法为例进行改进效果展示:
小编采用Matlab对以上16种算法改进策略进行了模块化编程,可方便大家进行模块调用和移植,对各种智能算法进行综合改进创新,实现算法自由。