一年级的孩子的确有很多在学前就已经熟练掌握了20以内的加减法,从1数到100啥的都不在话下。但不知大家有没有留意,孩子具体是怎么算的? 也许有的孩子因为非常熟练,加减法得数直接张口就来,以至于我们无法得知他有着怎样的思维过程。或许他已建立良好的数感,又或许他只是记住了答案。一年级的孩子记忆力通常较好,记住一些数字符号,以及它们之间的关系也许并不难。还有孩子也能得到答案,但不那么熟练。面对一道算式,他可能拿出手指来边掰边数,或者没有拿手指出来,只是稍怔住,在心里默数。像这样在嘴里念念有词,数出得数的孩子,值得我们多加关注。
嘴里要数意味着什么?特别是有的孩子还非要从1数起,数到几得数就是几,求答案没问题,但除了答案之外,是不是还少了点什么?在我看来,嘴里要数的孩子,实际在依赖一种语音的记忆。那么,极有可能的是,他对数的认识也停留在看到符号能对应音节的地步。会点数物品的个数,可能同样如此,记住了“一二三四五六七八”这样抑扬顿挫的音节,嘴里念到了哪个音,结果就是那个数了。这里到底少了什么呢?我个人认为是少了数模型的建构。
我们都知道,认识数得从不同的事物背景中抽象出数。三个苹果,三棵树,三个人,事物不同数量相同。所以这个符号“3”表示的是它们的相同之处——数量。我们是怎么帮助孩子完成抽象的呢?一般做法是借助于小棒、或者计数器、点子图等,先用一致的材料把事物的无关因素去掉,如用三根小棒既可以表示三个苹果,也可以表示三棵树或三个人。这就让学生知道,我们不关心事物到底是什么,我们只关心它是不是三个。此时借用小棒或者珠子,是一种半抽象的手段,它去除了事物的不同质地属性,保留着事物的数量特征。在此基础上,把三根小棒记作符号“3”,这就完全抽象了,这个符号不再体现出事物数量的特征。我们就这样引导着孩子从具体到半抽象,再到抽象来认识数。
在这样的认数过程中,如果我们好好利用半抽象的材料,帮助学生建构起数的模型,将大有裨益。教材中主要提供了点子图、小棒和计数器这几种材料。哪一种更适合用来构建数模型呢?在两年的一年级教学实践中,我发现点子图更好用。书上的点子图是这样的:
我改进的点子图是这样的:
为什么我要加上虚线格呢?就是为了更好地帮助学生建立起数模型。1~10的认识,我会反复让学生熟悉点子图,利用点子图来进行加减运算,还常利用课件的动态演示让小点子动起来,演示数的分与合,对应呈现加减法算式。想尽一切办法,就是努力让孩子们脑中有图式,把1~10以点子图的形式储存在脑子里。看到哪个数,马上脑海里呈现出相应的点子图。这有什么好处呢?您仔细看上面7的点子图,如果学生非常熟悉它,那么“7比6多1”“7比5多2”“7再加3就是10了”……这样的联系是不是非常自然就能想到?后续学习进位加,七加几要怎么凑十,学生能不能非常明了? 根本无需专门去背诸如“看到七,要想三”之类的口诀或儿歌(这也正是一年级与学前班应该有的区别。学前班背背儿歌没问题,到了一年级如果还是背儿歌来学习数与计算,那就不合适了)。
经历了数的抽象过程,如果能在脑子里刻上点子图,构建起10以内的数模型,再去学计算就非常轻松了。如果没有重视数模型的建构,学生更多依赖于语音的记忆,总要念念有词数出得数,一不小心就会出错,而且数错了还不自知,除非重数一遍,否则很难发现得数有误。如果看到数能想到点子图,学生可更直观地进行数的分与合(脑中可想象到直观的画面),计算起来较不易出错。
附:6~10的组成课堂作业单
(让每个学生在你的课堂上都有独立完成的任务,这很重要。一来每个孩子因此成为课堂的主角不被忽视。二来从一开始就养成认真完成作业的好习惯,这比什么都强。我们总说要培养孩子良好的学习习惯,但你都不给任务,孩子若无事可干,好习惯要怎么养成?倒是无所事事会积习难改。三来课堂上学生独立完成的作业能更真实地反应思维水平和掌握情况,便于老师把握课堂效度,进而改进教学。四来可让课堂静下来,学生专心工作去了,老师也少费点嗓,何乐而不为?)