python打印tensor_TensorFlow实现打印每一层的输出

本文介绍了如何在TensorFlow中使用pb模型文件和get_tensor_by_name函数获取并打印每一层的输出。通过读取图像,调整尺寸,减去VGG平均值,然后在会话中运行模型,将输出结果转为一维并写入文件。
摘要由CSDN通过智能技术生成

在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。

constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,['net_loss/inference/encode/conv_output/conv_output'])

with tf.gfile.FastGFile('net_model.pb', mode='wb') as f:

f.write(constant_graph.SerializeToString())

tf1.0中通过带weight的pb文件与get_tensor_by_name函数可以获取每一层的输出

import os

import os.path as ops

import argparse

import time

import math

import tensorflow as tf

import glob

import numpy as np

import matplotlib.pyplot as plt

import cv2

os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

gragh_path = './model.pb'

image_path = './lvds1901.JPG'

inputtensorname = 'input_tensor:0'

tensorname = 'loss/inference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值