voc2007数据集_YOLO-v3在VOC数据集上各类的AP

本文详细记录了作者使用YOLO-v3在VOC 2007数据集上进行目标检测的训练过程,包括多次训练尝试,调整batch大小、subdivision参数以避免显存溢出,以及学习率和学习率衰减策略的影响。通过训练,AP值得到显著提升,但遇到标签错乱问题,最终AP平均值达到0.7926。
摘要由CSDN通过智能技术生成

引自:https://blog.csdn.net/sum_nap/article/details/80493747

源码地址:pjreddie/darknet

训练指导:YOLO: Real-Time Object Detection

训练设备:Lenovo 拯救者;

GPU:1070ti;

显存:8GB;

训练数据:VOC 2007 ;VOC 2012。

数据来源及处理方式:YOLO: Real-Time Object Detection

第一次训练:采用默认参数,以预训练好的darknet53.conv.74.1为预加载权重开始训练;显存,卒;报错:out of memory;

第二次训练:更改参数,将batch降低一些试试,从64改成了48,当天运行平稳,于是去办了点事儿,两天回来后;显存,卒;报错:out of memory;提示已经训练了2w来个batch;

第三次训练:

先看看了参数到底什么含义(batch,subdivision),具体详见:https://blog.csdn.net/hrsstudy/article/details/65447947?utm_source=itdadao&utm_medium=referral

于是增大了subdivision,这样每次载入显存的图片数减少。并且监控GPU显存使用情况(70%左右的占用率࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值