引自:https://blog.csdn.net/sum_nap/article/details/80493747
源码地址:pjreddie/darknet
训练指导:YOLO: Real-Time Object Detection
训练设备:Lenovo 拯救者;
GPU:1070ti;
显存:8GB;
训练数据:VOC 2007 ;VOC 2012。
数据来源及处理方式:YOLO: Real-Time Object Detection
第一次训练:采用默认参数,以预训练好的darknet53.conv.74.1为预加载权重开始训练;显存,卒;报错:out of memory;
第二次训练:更改参数,将batch降低一些试试,从64改成了48,当天运行平稳,于是去办了点事儿,两天回来后;显存,卒;报错:out of memory;提示已经训练了2w来个batch;
第三次训练:
先看看了参数到底什么含义(batch,subdivision),具体详见:https://blog.csdn.net/hrsstudy/article/details/65447947?utm_source=itdadao&utm_medium=referral
于是增大了subdivision,这样每次载入显存的图片数减少。并且监控GPU显存使用情况(70%左右的占用率