pypark hive 开启动态分区_网站PV分析(Hive)

之前我们做过《java mapreduce实现网站PV分析》,这次我们可以用hive分析一些需求指标

提出需求:统计分析24小时各个时段的pv和uv

分析:

(1) pv统计总的浏览量 count(url)

(2) uv统计去重 count(distinct guid)

(3) 获取时间字段,日期和小时(分区表)

最终结果预期

48041fc0ea9efaa20eced84bd6d0176b.png

接下来注意每个阶段:采集阶段,清洗阶段,分析阶段。

准备数据,查看数据字典了解数据的结构和意义(此处省略了数据和数据字典的展示),可以认为此时数据已经采集完成了(采集阶段),一般由采集人员将数据交由到我们手上。

67a690ff66071debc72454169df19c99.png

登录beeline客户端

启动服务端:bin/hiveserver2 &

401a9ce28b3b31a12d6a2a4e391d00ff.png

启动客户端

bin/beeline -u jdbc:hive2://mastercdh:10000 -n root -p password

4ba2c946f92585add650914ba464968c.png

根据数据字典,创建数据表

创建数据库

243a7ebd06cb82de1b420adb3806993b.png

创建数据表

create table track_log_source(

id string,

url string,

referer string,

keyword string,

type string,

guid string,

pageId string,

moduleId string,

linkId string,

attachedInfo string,

sessionId string,

trackerU string,

trackerType string,

ip string,

trackerSrc string,

cookie string,

orderCode string,

trackTime string,

endUserId string,

firstLink string,

sessionViewNo string,

productId string,

curMerchantId string,

provinceId string,

cityId string,

fee string,

edmActivity string,

edmEmail string,

edmJobId string,

ieVersion string,

platform string,

internalKeyword string,

resultSum string,

currentPage string,

linkPosition string,

buttonPosition string

)row format delimited fields terminated by '';

2c8d0147c6d6efa8cef3ebc2c3ddd8d7.png

准备数据

e57cc9eabd6ab8d5dfd79faa25d243fe.png

将准备好的数据导入

load data local inpath '/data/test/data1' into table track_log_source;

load data local inpath '/data/test/data2' into table track_log_source;

c90c7a0216ab9a8c2aa2eb66e6467801.png

再查看下

52f6c20eadc3a76941cb7fda39694be5.png

采集完成后,需要对数据进行清洗,比如之前做过的《mapreduce实现数据去重》

根据之前的分析,我们创建表,将我们需要的字段提取出来

create table track_log_qingxi(

id string,

url string,

guid string,

date string,

hour string

)row format delimited fields terminated by '';

f0315bfd30c0a6856f4b64b5c6ad0ad0.png

插入数据

insert into table track_log_qingxi select id,url,guid,substring(trackTime,9,2) date,substring(trackTime,12,2) hour from track_log_source;

659e54ab6649e0a99ddbc14f20011327.png

分区表:根据时间字段进行分区

create table track_log_part1(

id string,

url string,

guid string

)partitioned by(date string,hour string)

row format delimited fields terminated by '';

1ef087b4b61a1a38cfec8da084496ad5.png

插入数据

insert into table track_log_part1 partition(date='20150828',hour='18') select id,url,guid from track_log_qingxi where date='28' and hour='18';

insert into table track_log_part1 partition(date='20150828',hour='19') select id,url,guid from track_log_qingxi where date='28' and hour='19';

0b627f92a304b86db559437f7e626d94.png

这样写的话,每次都需要填写条件,非常的不方便

我们来看一个概念:动态分区

首先在hive的配置文件hive-site.xml中,有两个属性

表示是否启用动态分区(这个是默认开启的)

hive.exec.dynamic.partition

true

使用动态分区,需要设置成非严格模式

hive.exec.dynamic.partition.mode

strict

我们用命令更改,不直接配置了

set hive.exec.dynamic.partition.mode=nonstrict;

a410226993e22cc09d8b73db2a49a010.png

那我们重新创建分区表

create table track_log_part2(

id string,

url string,

guid string

)partitioned by(date string,hour string)

row format delimited fields terminated by '';

357abedf32b81d5d9d06b05311681995.png

重新插入(这个地方利用动态分区的特性)

insert into table track_log_part2 partition(date,hour) select * from track_log_qingxi;

39b9fe2ca236131535debd4247dcc6eb.png

查看数据发现自动帮我们分开了,这样如果是多个时间的话也会自动完成

3275bb7fa99d3f628ef5c64af2bbbcb5.png

数据分析

PV查看

select date,hour,count(url) pv from track_log_part2 group by date,hour;

8e0bf9fd00db65b5c1903217e1967db5.png

UV分析

select date,hour,count(distinct guid) uv from track_log_part2 group by date,hour;

eec4fe7e4f1e7acb1bd246f668afda99.png

最终结果导入最终结果表中

create table result as select date,hour,count(url) pv,count(distinct guid) uv from track_log_part2 group by date,hour;

10df89e265af286a4e0b38e059ebcbb4.png

数据导出

将最终的结果保存在mysql中

在mysql中创建表

create table track_pv_uv_save(

date varchar(30),

hour varchar(30),

pv varchar(30),

uv varchar(30),

primary key (date,hour)

);

bba312f965023f985cfdf2872d97fd33.png

sqoop方式(hive-mysql)

bin/sqoop export

--connect jdbc:mysql://mastercdh:3306/track_log_mysql

--username root

--password password

--table track_pv_uv_save

--export-dir /user/hive/warehouse/exp_track_log.db/result

-m 1

--input-fields-terminated-by '001'

8c4f7d126778fc19da14a4ea11a3562b.png

在mysql中查看

edf266ed4d1f25c55be058467e67b504.png

我们可以将数据下载到本地

bin/hdfs dfs -get /user/hive/warehouse/exp_track_log.db/result/000000_0 /data/test

3fe625ca567079eb59c81f674f7b9706.png

查看下数据

2ab4acbed603394a75f92e428cf7a156.png

查看下数据是没有问题的

16274577b772cdfee36aa9ef74dfb2ea.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值