python处理pcap文件_使用dpkt解析pcap文件(Python)

本文介绍了一个使用dpkt模块解析HTTP头部遇到的问题,即部分有效数据包引发NeedData异常的情况,并探讨了可能的原因及解决方法。

I'm trying to parse a previously-captured trace for HTTP headers using the dpkt module:

import dpkt

import sys

f=file(sys.argv[1],"rb")

pcap=dpkt.pcap.Reader(f)

for ts, buf in pcap:

eth=dpkt.ethernet.Ethernet(buf)

ip=eth.data

tcp=ip.data

if tcp.dport==80 and len(tcp.data)>0:

try:

http=dpkt.http.Request(tcp.data)

print http.uri

except:

print 'issue'

continue

f.close()

While it seems to effectively parse most of the packets, I'm receiving a NeedData("premature end of headers") exception on some. They appear to be valid packets within WireShark, so I'm a bit confused as to why the exceptions are being thrown.

Some output:/ec/fd/ls/GlinkPing.aspx?IG=4a06eefebcc1495f8f4de7cb41f0ce5c&CID=2265e1228f3451ff8011dcbe5e0cdff7&ID=API.YAds%2C5037.1&1307036510547

issue

issue #misses one packet here, two exceptions

/?ld=4vyO5h1FkjCNjBpThUTGnzF50sB7QUGL0Ok8YefDTWNmO6RXghgDqHXtcp1OqeXATbCAHliIkglLj95-VEwG6ZJN3fblgd3Lh5NvTp4mZPcBGXUyKqXn9FViBAsmt1T96oumpCL5gm7gZ3qlZqSdLNUWjpML_9I8FvB2TLKPSYcJmb_VwwvJhiHpiUIvrjRdzqdVVnuQZVjQmZIIlfaMq0LOmgew_plopjt7hYvOSzBi3VJl4bqOBVk3zdhIvgZK0SfJp3kEWTXAr2_UU_q9KHBpSTnvuhY2W1xo3K2BOHKGk1VAlMiWtWC_nUaJdZmhzzWfb6yRAmY3M9YkUzFGs9z10-70OszkkNpVMSS3-p7xsNXQnC3Zpaxks

Help is appreciated; perhaps an alternative library recommendation is needed.

解决方案

I have encountered the same problem while working with HTTP Requests and dpkt.

The problem is that the dpkt's HTTP headers parser uses wrong logic. This exception is raised when the HTTP doesn't end with \r\n\r\n. (And as you say, there are a lot of good packets with no \r\n\r\n at the end.)

Here is the bug report to your problem.

### 使用Python解析PCAP文件的方法 在Python中,可以通过多种方法和库来解析PCAP文件。以下是几种常见的实现方式及其特点: #### 方法一:使用 `dpkt` 库 `dpkt` 是一个轻量级的库,适合快速解析PCAP文件并提取数据包的内容。以下是一个简单的示例代码[^2]: ```python import dpkt def parse_pcap_with_dpkt(file_path): counter = 0 ipcounter = 0 tcpcounter = 0 udpcounter = 0 with open(file_path, 'rb') as f: pcap = dpkt.pcap.Reader(f) for timestamp, buf in pcap: counter += 1 try: eth = dpkt.ethernet.Ethernet(buf) if eth.type != dpkt.ethernet.ETH_TYPE_IP: continue ip = eth.data ipcounter += 1 if isinstance(ip.data, dpkt.tcp.TCP): tcpcounter += 1 elif isinstance(ip.data, dpkt.udp.UDP): udpcounter += 1 except Exception as e: print(f"Error parsing packet: {e}") print(f"Total packets: {counter}, IP packets: {ipcounter}, TCP packets: {tcpcounter}, UDP packets: {udpcounter}") file_path = "example.pcap" parse_pcap_with_dpkt(file_path) ``` 此代码通过遍历PCAP文件中的每个数据包,统计总包数以及TCP/UDP/IP包的数量。 --- #### 方法二:使用 `scapy` 库 `scapy` 提供了更高级的功能,不仅能够解析PCAP文件,还能生成和发送网络数据包。对于大文件,推荐使用逐包读取的方式以节省内存[^3][^4]。下面是一段示例代码: ```python from scapy.all import PcapReader def parse_large_pcap_with_scapy(file_path): total_packets = 0 udp_packets = 0 with PcapReader(file_path) as pcap_reader: for packet in pcap_reader: total_packets += 1 if packet.haslayer('UDP'): udp_packets += 1 print(f"Total packets processed: {total_packets}, UDP packets: {udp_packets}") file_path = "large_example.pcap" parse_large_pcap_with_scapy(file_path) ``` 如果需要过滤特定类型的包(如UDP),可以直接调用 `haslayer()` 函数进行判断。 --- #### 方法三:手动解析十六进制数据 如果不依赖第三方库,也可以直接读取PCAP文件内的十六进制数据并解析其结构[^1]。这种方式较为复杂,通常仅适用于特殊需求场景。例如: ```python with open("data_packet.txt", "w", encoding="utf-8") as dbc_file: with open("test.pcap", "rb") as f: pcap = dpkt.pcap.Reader(f) for timestamp, packet in pcap: hex_data = packet.hex() dbc_file.write(f'Timestamp: {timestamp}\tHex Data: {hex_data}\n') ``` 这种方法会将每条数据包的时间戳和对应的十六进制表示写入文件。 --- ### 总结 - 如果追求性能和简单性,可以选择 `dpkt`。 - 对于复杂的分析任务或者需要动态生成数据包的情况,推荐使用 `scapy`。 - 若需完全自定义解析逻辑,则可考虑手动解析十六进制数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值