logistic模型matlab代码_人口增长模型

本文探讨了人口增长的Logistic模型,解释了模型如何考虑资源限制,并通过MATLAB代码展示了如何实现这一模型。Logistic模型在数据挖掘、疾病预测等领域有广泛应用,能描述S型增长规律。
摘要由CSDN通过智能技术生成

点击关注不迷路!!!

      世间万物均有规律可循,从第一个人类诞生到现在70多亿的人口世界,人口的增长同样有规律可循,据考古学家论证,地球上出现生命距今已有 20 亿年,而人类的出现距今却不足 200 万年。纵观人类人口总数的增长情况,我们发现:1000 年前人口总数为 2.75 亿。经过 漫长的过程到 1830 年,人口总数达 10 亿,又经过 100 年,在 1930 年,人口总数达 20 亿;30 年之后,在 1960 年,人口总数为 30 亿;又经过 15 年,1975 年的人口总数是 40 亿,12 年之后即 1987 年,人口已达 50 亿。 

我们自然会产生这样一个问题:人类人口增长的规律是什么?

9dd7516474b811c316a671aed48df7ad.png

我们先来做一些假设:

设x(t)表示t时刻的人口数,且 x(t)连续可微。人口的增长率r 是常数(增长率=出生率—死亡率)。人口数量的变化是封闭的,即人口数量的增加与减少只取决于人口中个体的生育和死亡,且每一个体都具有同样的生育能力与死亡率。 

所以就有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值