上一篇文章讲了最小二乘算法的原理。这篇文章通过一个简单的例子来看如何通过Python实现最小乘法的线性回归模型的参数估计。
王松桂老师《线性统计模型——线性回归与方差分析》一书中例3.1.3。
说的是一个实验容器靠蒸汽供应热量,使其保持恒温,通过一段时间观测,得到下图表中的这样一组数据:
其中,自变量X表示容器周围空气单位时间的平均温度(℃),Y表示单位时间内消耗的蒸汽量(L),共观测了25个单位时间(表中序号一列)。
那么,我们要怎样对这组数据进行线性回归分析呢?一般分三步:(1)画散点图,找模型;(2)进行回归模型的参数估计;(3)检验前面分析得到的经验模型是否合适。
画散点图
创建一个DataTemp的文件夹,在其中分别创建"data"、"demo"文件夹用于存放数据文件、Python程序文件。
把前面图中的数据导入Excel中,命

本文介绍了如何使用Python实现最小二乘法进行线性回归分析,通过一个蒸汽供应实验数据的例子,详细阐述了从画散点图、进行参数估计到检验模型效果的步骤。文中涉及数据导入、散点图绘制、模型函数定义及误差函数计算,并展示了Python代码实现。
最低0.47元/天 解锁文章

9653

被折叠的 条评论
为什么被折叠?



