自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 机器学习——PCA降维

①降维(Dimensionality Reduction,DR)是指采用线性或者非线性的映射方法将高维空间的样本映射到低维空间中。②降维获得低维空间的数据等价表示,实现高维数据的可视化呈现。-仅仅需要以方差衡量信息量,不受数据集以外的因素影响。-各主成分之间正交,可消除原始数据成分间的相互影响的因素。-计算方法简单,主要运算是特征值分解,易于实现。

2024-06-18 11:13:55 1600

原创 机器学习——支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,SVM可以用于线性和非线性分类问题,回归以及异常值检测其基本原理是通过在特征空间中找到一个超平面,将不同类别的样本分开,并且使得离超平面最近的样本点到超平面的距离最大化。这个超平面称为最大间隔超平面,它可以很好地进行分类预测。具体而言,SVM通过将样本映射到高维特征空间,使得数据在该空间中线性可分。

2024-06-11 16:36:41 3907

原创 机器学习——​逻辑回归(Logistic Regression)​

在机器学习中,分类问题是一种常见的任务,目标是根据输入特征将数据点分配到不同的类别中。为了实现分类,我们需要训练一个分类器,该分类器能够根据输入数据的特征进行预测。逻辑回归(LogisticRegression)是一种常用的分类算法,尤其适用于二分类问题。逻辑回归的核心思想是通过对数几率函数(logistic function)将线性回归的输出映射到概率空间,从而实现分类。注意:逻辑回归虽然名字中有回归二字,但是它不是回归算法,而是分类算法。梯度下降法(Gradient Descent)

2024-05-28 13:14:48 2838

原创 机器学习——贝叶斯定理

人对某一事件未来会发生的认知,大多取决于该事件或类似事件过去发生的频率。这就是贝叶斯定理的数学模型,它最早由数学家托马斯·贝叶斯提出。贝叶斯生活在18世纪,他是一位牧师。1763年,他发表了论文《论有关机遇问题的求解》,提出了一种解决问题的框架思路,即通过不断增加信息和经验,逐步逼近真相或理解未知。这种思想奠定了贝叶斯理论的基础。贝叶斯定理的过程可以归纳为:“过去经验”加上“新的证据”得到“修正后的判断”。它提供了一种将新观察到的证据和已有的经验结合起来进行推断的客观方法。

2024-05-14 12:55:41 1496

原创 机器学习——决策树(DT)原理,ID3算法、C4.5算法python实现案例

决策树是一种基于树状结构的机器学习算法,用于分类和回归任务。它通过一系列简单的问题或条件,逐步将数据集划分到不同的类别或值。每个内部节点表示一个特征/属性,每个分支代表一个可能的特征值,而每个叶节点表示一个类别或值。决策树易于理解和解释,适用于小型到中等规模的数据集,并且能够处理具有非线性关系的数据。常见的决策树算法包括ID3、C4.5、CART等。1. ID3、C4.5和CART算法均只适合在小规模数据集上使用2. ID3、C4.5和CART算法都是单变量决策树。

2024-04-30 15:43:43 1945

原创 机器学习——常见的分类模型评估指标,ROC曲线和PR曲线分析

在机器学习领域,评估分类模型的性能是至关重要的一步,它可以帮助我们了解模型的准确性和泛化能力。在分类问题中,准确度(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数是最为常用的评估指标。(1)混淆矩阵是监督学习中的一种用于评估分类模型性能的可视化工具,主要用于模型的分类结果和实例的真实信息的比较。(2)使用混淆矩阵的好处在于它能够提供一种直观的方式来理解模型在各个类别上的表现,尤其是在类别不平衡的情况下。

2024-04-16 15:59:17 1439

原创 机器学习——k-近邻算法原理实现

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。在分类任务中,KNN算法通过测量不同数据点之间的距离来确定新数据点的分类。6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。计算新数据点与训练集中所有数据点的距离。

2024-04-02 17:37:08 645 1

原创 Anaconda下载,安装及环境变量的配置

依次点击设置—系统—高级系统设置—环境变量—系统变量—找到path,之后按下图所示配置用户变量。输入链接“https://www.anaconda.com/”登录Anaconda官网下载。(1)win+R,输入cmd,输入python,查看python版本号,输入exit()退出。(2)输入conda --version ,查看conda版本号。3.配置Anaconda环境变量。1.下载anaconda并安装。2.验证是否安装成功。

2024-03-19 05:15:00 194 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除