leetcode279—完全平方数原题链接
原题简述
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
解法分析
动态规划
dp[i]: 组成正整数i的完全平方数的最小个数
初始条件:
dp[0]=0;
dp[1]=1;
动态转移方程:
dp[i]=min(dp[i],dp[i-j*j]+1),其中j*j<=i.
复杂度分析
时间复杂度: O(n3/2) ;
空间复杂度: O(n) ;
参考代码
class Solution {
public int numSquares(int n) {
if(n == 0) return 0;
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for(int i = 2; i <= n; i++) {
dp[i] = i;
for(int j = 1; j * j <= i; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
return dp[n];
}
}
func numSquares(n int) int {
dp := [100000]int{0}
for i := 1; i <= n; i++ {
dp[i] = i
for j := 1; j * j <= i; j++ {
dp[i] = min(dp[i],dp[i - j * j] + 1)
}
}
return dp[n]
}
func min(a int, b int) int {
if a < b {
return a
} else {
return b
}
}