余弦函数导数推导过程_矩阵求导+BP算法推导以及编程实现思路

b8d1312a96ff21ea1f8f2012568e468a.png

本文可以看作是一个记录学习的文档,主要记录了自己学习神经网络的BP算法的过程。文章从基本的标量对矩阵的导数着手,一步步的深入到对BP算法的推导和理解。如果你目前还是一个不懂矩阵导数的新手,并且试图自己编程实现一个神经网络,那么这篇文章或许能帮助到你!

本文很多内容都是参考自下面的文章,其中的很多内容对我的理解帮助很大,在此对几位作者表示感谢!同时本文也可以看作是对这几篇文章的一个总结

长躯鬼侠:矩阵求导术(上)​zhuanlan.zhihu.com
零基础入门深度学习(3) - 神经网络和反向传播算法​www.zybuluo.com 论智:只用NumPy实现神经网络​zhuanlan.zhihu.com
7fbda8c2f80864b07704aa9afc5724b2.png

目录

  • 问题引出:一个经典的两层MLP示意
  • 标量对矩阵的导数
  • BP算法的推导
  • 算法的编程实现逻辑

1问题引出

推导BP算法还得从经典的多层感知机(MLP)入手

4c8fff2855776a4de4b41215f2b5f494.png

上图表示了一个单隐藏层的MLP。下面将在这个MLP模型下探讨BP算法:

:输入nx1列向量,
:mx1真实的标签。
:pxn列向量,
:mxp的矩阵

中间的激活层使用Sigmoid函数,输出层使用softmax函数,损失函数使用交叉熵。则可以写出该网络的损失函数为:

BP算法的核心在于如何利用损失函数的梯度来更新各层的权重

。也即为如何求取
这在数学上对应着一个标量对矩阵的导数。所以首先需要给出标量对矩阵的导数的定义以及运算法则

2标量对矩阵的导数

主要参考(作者对矩阵求导讲得十分详细,本文的内容很多来自与该文章,只是增加了一些细节的理解!)

长躯鬼侠:矩阵求导术(上)​zhuanlan.zhihu.com
(1)标量
对矩阵
的导数的定义:
,
对X逐元素求导排成与X尺寸相同的矩阵。

(2)全微分和导数的关系:首先来看
是nx1向量的情况
,此处的
也即为我们所关心的梯度向量,所以如果求出了全微分,那么求梯度也就很自然了。当然实际情况我们要求的导数并非一个向量,而是一个矩阵,根据上面有:

不难理解,对于矩阵的情况,只是后面的导数和微分向量的内积变为了内积的 迹!!!
为了更好的理解,首先来看一个例子以验证上面的公式:

将上面的式子展开,再根据上面标量对矩阵求导的定义,不难直接写出:

而根据全微分定义,很容易写出

而上面的结果恰好等于:

有了上面的铺垫,下面便可以来求取交叉熵结合sofmax函数的导数了(要无障碍看懂下面推导内容,建议先看“矩阵求导术”文章中的几个例题):

,如果用矩阵表示的话,

.

注:

表示全1的行向量
以下求解过程全部来源于上面文章中的过程,此处只对其中的细节作说明:
用到的性质:

推导过程如下:

再由矩阵导数与微分的关系:

BP算法正式推导!!!

有了上面的内容作为铺垫,下面推导BP算法的过程就相当容易,首先考虑输入为单样本,输入

为一个nx1的列向量,
为一个mx1的列向量:

.

令:

根据约定:习惯性的将损失函数对每一层的输出(未激活)的导数记为

如果最后一层采用的是softmax激活函数和交叉熵损失函数的结合,那么根据我们前面的推导:

也即为:输出-真实值............这可以作为softmax+Cross entropy的一个结论!!!

利用链导法则可以继续向后求取

首先需要得到

,直接根据链导法则 ,会继续用到迹技巧!根据最前面的矩阵微分和导数的联系 ,先假设
的微分为

而容易看出

,因此会有:

再次根据链导法则:


以上过程实际上是针对单个样本输入的情况!下面将会在其基础上推导出N个样本输入情况下的BP算法。

此时的输入
为一个nxN的矩阵.与单样本不同的地方在于输入多了一个维度,那么对于最后的求取交叉熵而言,应该是N个样本的平均交叉熵。

推导过程类似:下面直接给出结论:


BP算法的编程实现逻辑

以上部分针对两层的网络对BP算法进行了一个详细的推导!!但对于计算机来说,我们必须把整个反向传播过程理出一个迭代的逻辑出来才可以。

下面需要对N个隐藏层的反向传播作一个概括描述,假设网络有

层的权重;
层的偏置;
层的输入
为网络输出;
:
层未激活之前的输出

上面的四条公式就概括了含有

个隐藏层,激活函数采用
,输出层采用
的MLP的整个反向传播的过程。

为了更好的理解上面几组公式,不妨将前面推导出来的两层网络结果带入进行验证。

首先验证输出层:

由于我们所使用的激活函数为sigmoid,其导数可以用其自身表示为

回传到第一层进行验证:

该验证过程其实正是我们编写程序的逻辑!!!

反传的逻辑就可以如下编程实现:

  • 在前传的过程中保存
  • 反向传播的过程利用上面的四个公式来不断求取
    以更新
    。注意初始化入口是在最后的输出层处的
    也即
    ,其值根据输出层所采用的激活函数和损失函数类型决定,经典的
    softmax+Cross entropy对应的
    .常常当作结论使用!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值