余弦函数导数推导过程_导数运算法则推导过程

哈喽,大家好!非常的感谢大家在百忙之中能够来阅读小编的文章,你们的每一次阅读都是给小编最大的创作动力,在这里小编承诺给带给大家优秀的文章,每一篇都会认认真真的去完成。今天,我们的主题是:导数运算法则推导过程

导数是函数值相对于自变量的瞬时变化率,求导数是一个取极限的过程。对于一个连续且可导的函数,其导数的定义如下

a6ff63a0cd2d3e42871a7e3838c684fb.png

函数可导的前提是函数必须连续,对于连续函数,有下列等式成立

3785799a24f33a69aac70204da4d5d75.png

上式是函数在x处连续的定义。结合连续函数的定义和极限的运算性质,我们接下来推导导数运算法则。

两个函数相加的导数

假设F(x)为两个可导函数的和

7c5ec1cfa636de4a9d724da82a6553f6.png

那么根据导数定义,F(x)的导数为

881886de2e0c4eb30b1eb6204f482021.png

即两个可导函数的和的导数等于导数的和,导数运算减法同理。

两个函数乘积的导数

假设G(x)为两个可导函数的和

4b164341127d84c160c72738f7ccdd7b.png

根据导数定义,G(x)的导数为

5605dcbda820648af0a36f7093a4a7b2.png

两个可导函数的乘积的导数的结果为

9396ca3521591f1017e371dbd1783c7e.png

两个函数的比值的导数

假设H(x)为两个可导函数的比值

1a7625c1d8f5f14fbb76788fc1a22037.png

根据导数定义,那么H(x)的导数为

f8bd46df7aa6e5475e98031db718bcaf.png

两个可导函数的比值的导数结果为

bf3ce0dde0b141fd70ce14e9bc42c8e7.png

掌握推导过程可以帮助理解导数的定义和运算。

结束语:好了,今天小编的文章就到此结束了,感谢各位朋友的阅读。每一篇文章,都是小编用心写的,收集了许多的资料,实属不易!如果各位阅读的朋友觉得小编今天写的文章不错,那么就麻烦各位朋友高抬金手,在文章末尾为小编点一个小小的赞,各位朋友的赞,将会让小编高兴一整天,也会成为小编继续努力的动力!同时如果各位朋友喜欢小编写的文章,可以给小编点点关注,好让小编拥有这份荣幸,继续为各位朋友创作优质的文章!当然在这里小编也祝福各位朋友天天开心,万事如意!

注:故事真实性已被证实,图片来源于网络,如有侵权,请联系删除!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值