余弦函数导数推导过程_数学漫步:探讨正切函数tanx导数的代数与几何原理

最近我们展示了正弦,余弦函数求导的几何原理,形象直观,更容易理解,今天我们就来讲讲正切函数求导的几何原理,它在一定程度上比正弦,和余弦函数要更为复杂一点。

第一:代数下的推导方式

进行几何推导之前,我们先来欣赏一种优美的代数下的推导方法,这里用到的是分部积分法

6f813b276645238001f48e8776043531.png

首先将tan=sinX/cosX,运用分部积分法,我们很容易得到如下结果

eaf98b2a4171c3506d05e986a62a12ab.png

最后化简,就得到tanX导数等于(1/cosX)^2

a7ac23f47d256fb9177f81832ae60553.png

第二:几何下的推导

我们先做一个单位圆,并旋转X度时,我们可以得到用三角函数形式表示的线段,如下图所示:cosX,sinX,tanX,secX,等等。

如果把角度增加微小的量ΔX时,就得到一个微元三角形ΔABC,该三角形的面积等于1/2*Δy*1。

但ΔABC面积又等于1/2* sec(X+ΔX)* secX* sinΔX,

所以我们就得到Δy= sec(X+ΔX)* secX* sinΔX,

c2931db0a8543dbd12653494a7f3d147.png

最终我们就得到了tanX的导数,它等于(1/cosX)^2,或者可以写成正割函数的平方secX^2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值