由上一篇的Laurent级数直接引出孤立奇点的概念,但是在介绍孤立奇点之前我打算先系统的介绍一下零点的孤立性,虽然在之前的文章中有提到过,但是我个人认为还是在这里和孤立奇点的关系更加密切。然后紧接着介绍孤立奇点及其判定定理。
isle:复分析(6)——Taylor展式和Laurent展式zhuanlan.zhihu.com- 解析函数零点的孤立性
- 解析函数零点的定义与性质
- 零点的孤立性定理
- 解析函数的唯一性
- 最大模原理
- 孤立奇点的定义
- 孤立奇点的分类
- 可去奇点的判别法
- m阶极点判别法
- 极点判别法
- 本性奇点判别法
- W定理
- Picard定理
- 奇点
的定义和性质
- 整函数
- 相关习题
解析函数零点的孤立性
解析函数零点的定义和性质


注意到
- 一个实函数的零点不一定是孤立的(例如
)
- 但是在复变函数中有零点的孤立性定理
零点的孤立性定理

关于这个定理还有一个推论

注意到
-
在
的子域上也等于0
-
在
内解析的条件必不可少(反例:
)
解析函数的唯一性

注意到
-
和
在
的一个子域上相等,那么它们在
内相等
- 一切在实轴上成立的恒等式,在整个复平面上成立只要恒等式的两端在复平面内解析即可
最大模原理

注意到
- 解析函数在边界上的最大模可以限制其在区域内的最大模
关于最大模原理有个推论
推论6.1
函数在有界区域
中解析,在
中连续,
,则 除
为常数外,
![]()
注意到
- 有界闭域上的解析函数的最大模只能在边界取得
- Cauchy不等式中的
也可以理解成圆盘内的最大模
孤立奇点的定义

解析部分和主要部分

注意到
-
在点
的主要的部分表示
在点
的奇点性质的体现
-
在点
的解析部分在其收敛范围内收敛于一个解析函数
孤立奇点的分类

可去奇点判别法

关于可去奇点的例子:
可将
m阶极点判别法

极点判别法

注意到
- 设
为
的孤立奇点,则
为
的m阶极点的充要条件为:
存在且不为零
本性奇点判别法


这两种不同的判别法适用于不同的题目。
W定理

Picard定理

这里给一个关于奇点的小总结
奇点


注意到:
- 处理
这个孤立奇点的方法,是用倒数变换将
在
去心领域内的性质转化为
在对应原点的去心领域中的性质
- 变换前后的函数的性质
- 对于扩充
平面中有
在对应
平面内有
- 在对应点
上有
-
有可能都不存在
- 对于扩充
- 可以用
在原点的性质来描述
在无穷远点的性质

整函数

代数学基本定理

这个定理刻画的是:在复空间中,任意n阶多项式都至少有一个根。

亚纯函数

相关习题

15.1:
15.2:
这道题要注意的是分子对于分母的影响,特别是会影响到极点的阶数
15.3:
15.4:
15.5:
15.6:
从上面几道题可以看出有以下的结论
对于复变函数
对于第二种情况如果遇到



27.1:
27.2: