0阶贝塞尔函数_函数的极值问题(二)

目录

2.3函数的极值

2.3.1函数的二阶近似

2.3.2函数的停留点

2.4拉格朗日乘子法

2.4.1制约条件1个情况下拉格朗日乘子法

2.4.2限制条件有多个情况下拉格朗日乘子法

(开始)

2.3函数的极值

2.3.1函数的二阶近似

函数

在点
处泰勒展开,有:

其中

代表函数在点
上的值,
代表
3次以上的项

注意:本章仅涉及平滑函数。 平滑意味着无论进行多少次偏微分,都可以获得连续的偏导函数。

叫做函数

在点
处的二次近似。

比方说,2个变量函数的函数值看作

轴方向的长度。曲面
和曲面
只差在
附近关于
3次以上的项上。即曲面
2阶近似。

b4d7c0536bbcbf1b80da629699a7f8a7.png

2.3.2函数的停留点

函数

的梯度
是函数最急剧增大的方向,它对应的范数
是这个方向上的增加率。

极值点梯度

为0,为何?

如果梯度不为0的话,只要朝梯度方向稍微往前一点点函数值就会增大,往梯度反方向前进一丢丢函数值也会减少,都不会是极值点。

定理:如果函数

在点
上取得极值的话,在这个点对各个变量的偏微分都为0

满足上式的点叫停留点,该点的函数值叫做停留值。

函数

在点
处取得极值的话,该点的2次近似可以写为以下:

其中,

表示的是矩阵
在点
上的值。

定理:Hessen矩阵在停留点处是正定对称矩阵的话在该点取得极小值,负定对称矩阵的话在该点取极大值。

注意:但即使原本的函数能够取得极大值或极小值,这个函数的2次近似未必能取得极大/极小值。

例题1:求

在(0,0)这点的极值

,在点(0,0)处
,说明2次近似
没有极大/极小值

例题2:求函数

的极值

解得

Hessen矩阵

在点(1,2,1)处为

,在点(0,2,1)处

在点(1,2,1)处的1阶,2阶,3阶余子式分别为:

根据Sylvester–Gallai定理(シルベスタの定理)可知这是正定对称矩阵,在点(1,2,1)处可以取得极小值。这个值为

在点(0,2,0)处的1阶,2阶,3阶余子式分别为:

根据Sylvester–Gallai定理(シルベスタの定理)可知这不是负定对称矩阵,无法判断在点(0,2,0)处能否取得极值。

2.4.1拉格朗日乘子法

2.4.1有一个制约条件的时候

例题3:在

的条件下求令函数
取得最小值的点

解:这里的

就是一个制约条件,在不消除变量的情况下系统地求解的方法称为拉格朗日乘子法。

如图所示,

经过该点的等高线必须与直线
相切,这是因为在切点处两者的法向量平行(即它们具有相同或相反的方向)

•(如果与等高线相交,则沿直线的值将从较小变为较大,反之亦然,因此该点没有最小值,因此必须相切。)

6902a2dbbf89ec45857a5a03b0001d4c.png

(正式求解:让函数

的等高线的法线向量为
,直线
的法线向量为

函数

在点
处泰勒展开,有:

其中

代表函数在点
上的值,
代表
3次以上的项

注意:本章仅涉及平滑函数。 平滑意味着无论进行多少次偏微分,都可以获得连续的偏导函数。

叫做函数

在点
处的二次近似。

比方说,2个变量函数的函数值看作

轴方向的长度。曲面
和曲面
只差在
附近关于
3次以上的项上。即曲面
2阶近似。

b4d7c0536bbcbf1b80da629699a7f8a7.png

函数

的梯度
是函数最急剧增大的方向,它对应的范数
是这个方向上的增加率。

极值点梯度

为0,为何?

如果梯度不为0的话,只要朝梯度方向稍微往前一点点函数值就会增大,往梯度反方向前进一丢丢函数值也会减少,都不会是极值点。

定理:如果函数

在点
上取得极值的话,在这个点对各个变量的偏微分都为0

满足上式的点叫停留点,该点的函数值叫做停留值。

函数

在点
处取得极值的话,该点的2次近似可以写为以下:

其中,

表示的是矩阵
在点
上的值。

定理:Hessen矩阵在停留点处是正定对称矩阵的话在该点取得极小值,负定对称矩阵的话在该点取极大值。

注意:但即使原本的函数能够取得极大值或极小值,这个函数的2次近似未必能取得极大/极小值。

例题1:求

在(0,0)这点的极值

,在点(0,0)处
,说明2次近似
没有极大/极小值

例题2:求函数

的极值

解得

Hessen矩阵

在点(1,2,1)处为

,在点(0,2,1)处

在点(1,2,1)处的1阶,2阶,3阶余子式分别为:

根据Sylvester–Gallai定理(シルベスタの定理)可知这是正定对称矩阵,在点(1,2,1)处可以取得极小值。这个值为

在点(0,2,0)处的1阶,2阶,3阶余子式分别为:

根据Sylvester–Gallai定理(シルベスタの定理)可知这不是负定对称矩阵,无法判断在点(0,2,0)处能否取得极值。

2.4.1拉格朗日乘子法

2.4.1有一个制约条件的时候

例题3:在

的条件下求令函数
取得最小值的点

解:这里的

就是一个制约条件,在不消除变量的情况下系统地求解的方法称为拉格朗日乘子法。

如图所示,

经过该点的等高线必须与直线
相切,这是因为在切点处两者的法向量平行(即它们具有相同或相反的方向)

•(如果与等高线相交,则沿直线的值将从较小变为较大,反之亦然,因此该点没有最小值,因此必须相切。)

6902a2dbbf89ec45857a5a03b0001d4c.png

(开始解题)

函数

等高线的法线向量为
,直线
的法线向量为

因为两个法线向量平行,所以给一个定值

解得:

(这个

称为拉格朗日乘数)

解得

的最小值为

将问题一般化,求在制约条件

的约束下函数
的极值

解法同样,曲线

的等高线的法线向量在那个点(极值可能点)平行,等高线的法线向量为
,曲线
的法线向量为
,两者平行意味着存在一个常数(拉格朗日乘数)

fca393f0deee04bdb0760e347ee83f82.png

扩展一下,当变量有

个时也适用。

限制条件为

,求函数
的极值。

表示的是
元空间上的曲面,在这个曲面上函数
能取极值的点与曲面
相切,两者的法线向量分别用
来表示。因为
平行所以存在一个常数(拉格朗日乘数)满足

3f19b2fa7b1970d46ddff9d9215d81af.png

可以将式子改写成

,用下面的极值求解步骤。

函数

在限制条件
下的极值点

极值求解步骤:先令

求解下式:

(结束)

例题4:内接椭圆体

,各边平行于坐标轴的直方体中求体积的最大值。

d09caaaaa467ef55954b8741b3cb4a03.png

解:直方体第一象限的顶点为

,体积为
,导入拉格朗日乘数

解得:

有:

解得:

2.4.2限制条件有多个情况下拉格朗日乘子法

求函数

在限制条件
的极值问题

思考:限制条件

分别表示在
空间中的曲面,问题是求他们两个曲面交线上函数
的极值点。这个交线与
的等值面相切。

曲面

的交线与
的等值面相切的理由是,如果交线与等值面相交而非相切,那么相交处的值将从较小的值增大为较大的值,反之亦然,于是在该点处不会取到极点值。 因此,我们交线必须与
的等值面相切。

d85dea853f92cdd0deaadd028cf1d682.png
限制条件有2个的情况下

分别是曲面
的法线向量,
都正交于这些曲面的交线。 从图中可以看到,交线与等值面相切,
的等值面的法线向量
在同一平面上。因此存在一个常数(拉格朗日常数)满足:

这个式子再加上约束条件

即可求解。

一般情况下:求函数

在限制条件
下的极值问题

解满足

解这

个方程未知数
也有
个,一般通过解方程式求解即可。

(完)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值