柱函数-贝塞尔函数

本文深入探讨柱函数,特别是Bessel函数,包括其定义、解法、性质和应用。从圆膜振动问题出发,解析Bessel方程的解,详细阐述第一类和第二类柱函数,讨论其特殊性质、零点、递推公式和正交归一化关系。此外,还介绍了其他柱函数如诺依曼函数和变形贝塞尔函数,以及它们的渐近行为。
摘要由CSDN通过智能技术生成

柱函数的提出

考虑固定边界的圆膜振动, 可以归结为定解问题
{ u u = a 2 ( u x x + u y y ) ( 0 ⩽ x 2 + y 2 < l 2 , t > 0 ) u ∣ x 2 + y 2 = l 2 = 0 ( t ⩾ 0 ) , u ( x , y , 0 ) = φ ( x , y ) , u l ( x , y , 0 ) = ψ ( x , y ) ( 0 ⩽ x 2 + y 2 ⩽ l 2 ) , \begin{cases}u_{u}=a^{2}\left(u_{x x}+u_{y y}\right) & \left(0 \leqslant x^{2}+y^{2}<l^{2}, t>0\right) \\ \left.u\right|_{x^{2}+y^{2}=l^{2}}=0 & (t \geqslant 0), \\ u(x, y, 0)=\varphi(x, y) & , u_{l}(x, y, 0)=\psi(x, y) \quad \left(0 \leqslant x^{2}+y^{2} \leqslant l^{2}\right),\end{cases} uu=a2(uxx+uyy)ux2+y2=l2=0u(x,y,0)=φ(x,y)(0x2+y2<l2,t>0)(t0),,ul(x,y,0)=ψ(x,y)(0x2+y2l2),
在柱坐标下定解问题变为
{ r 2 R ′ ′ ( r ) + r R ′ ( r ) + [ ( k r ) 2 − v 2 ] R ( r ) = 0 Φ ′ ′ ( φ ) + n 2 Φ ( φ ) = 0 , Φ ( φ + 2 π ) = Φ ( φ ) . Z ′ ′ + μ Z ( z ) = 0 \left\{\begin{array}{l}r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\left[(k r)^{2}-v^{2}\right] R(r)=0 \\ \Phi^{\prime \prime}(\varphi)+n^{2} \Phi(\varphi)=0, \quad \Phi(\varphi+2 \pi)=\Phi(\varphi) . \\ Z^{\prime \prime}+\mu Z(z)=0\end{array}\right. r2R(r)+rR(r)+[(kr)2v2]R(r)=0Φ(φ)+n2Φ(φ)=0,Φ(φ+2π)=Φ(φ).Z+μZ(z)=0
k 2 = λ − μ k^2=\lambda-\mu k2=λμ λ \lambda λ在分离时间时引入, μ \mu μ在分离 z z z变量时引入, μ = 0 \mu=0 μ=0表示系统在z方向平移不变, λ = 0 \lambda=0 λ=0表示稳定场。

k 2 = λ − μ ≠ 0 k^2=\lambda-\mu \neq 0 k2=λμ=0时的径向方程为bessel方程。

k r = x kr=x kr=x R ( r ) = y ( x ) R(r)=y(x) R(r)=y(x) x 2 y ′ ′ + x y ′ + ( x 2 − v 2 ) y = 0 x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0 x2y+xy+(x2v2)y=0 v v v阶Bessel方程

y ′ ′ + 1 x y ′ + ( 1 − v 2 x 2 ) y = 0 y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{v^{2}}{x^{2}}\right) y=0 y+x1y+(1x2v2)y=0

Bessel方程的解

x 0 x_0 x0是方程的正则奇点,为了使最后不会得到奇奇怪怪x的小数项,级数展开时都乘以 x ρ x^\rho xρ,则 y ( x ) = x ρ ∑ k = 0 ∞ c k ( x − x 0 ) k y(x)=x^\rho \sum_{k=0}^{\infty }c_k(x-x_0)^k y(x)=xρk=0ck(xx0)k

ρ \rho ρ为指标,求 ρ \rho ρ的方程–指标方程

y = ∑ k = 0 ∞ c k x k + ρ y=\sum^{\infty}_{k=0}c_kx^{k+\rho} y=k=0ckxk+ρ带入Bessel 方程并化简得到

{ ( ρ 2 − ν 2 ) c 0 = 0 , [ ( ρ + 1 ) 2 − ν 2 ] c 1 = 0 , [ ( ρ + k ) 2 − ν 2 ] c k + c k − 2 = 0 , k = 2 , 3 , 4 , ⋯   . \left\{\begin{array}{l}\left(\rho^{2}-\nu^{2}\right) c_{0}=0,\\ \left[(\rho+1)^{2}-\nu^{2}\right] c_{1}=0,\\ \left[(\rho+k)^{2}-\nu^{2}\right] c_{k}+c_{k-2}=0, k=2,3,4, \cdots .\end{array}\right. (ρ2ν2)c0=0,[(ρ+1)2ν2]c1=0,[(ρ+k)2ν2]ck+ck2=0,k=2,3,4,.

由于 c 0 = c 1 = 0 c_0=c_1=0 c0=c1=0只能得到平凡解,故 c 0 ≠ 0 , c 1 ≠ 0 c_0\neq0,c_1\neq0 c0=0,c1=0,可以舍去,因此可以得到指标方程为 ρ 2 − v 2 = 0 \rho^2-v^2=0 ρ2v2=0,所以 ρ 1 = v \rho_1=v ρ1=v ρ 2 = − v \rho_2=-v ρ2=v

ρ 1 = v \rho_1=v ρ1=v时, c 0 ≠ 0 c_0\neq 0 c0=0 c 1 = 0 c_1=0 c1=0,令 c 2 n = ( − 1 ) n c 0 Γ ( ν + 1 ) 2 2 n n ! Γ ( ν + n + 1 ) c_{2 n}=(-1)^{n} \frac{c_{0} \Gamma(\nu+1)}{2^{2 n} n ! \Gamma(\nu+n+1)} c2n=(1)n22nn!Γ(ν+n+1)c0Γ(ν+1) c 0 = 1 2 v Γ ( ν + 1 ) c_0=\frac{1}{2^v\Gamma(\nu+1)} c0=2vΓ(ν+1)1

【这样取 c 0 , c 2 n c_0,c_{2n} c0,c2n是为了方便母/子函数表达方便】

则第一个解 y 1 ( x ) = J v ( x ) = ∑ k = 0 ∞ ( − 1 ) k 1 k ! Γ ( v + k + 1 ) ( x 2 ) 2 k + v y_1(x)=J_v(x)=\sum_{k=0}^{\infty}(-1)^k\frac{1}{k!\Gamma(v+k+1)}(\frac{x}{2})^{2k+v} y1(x)=Jv(x)=k=0(1)kk!Γ(v+k+1)1(2x)2k+v J v ( x ) J_v(x) Jv(x)称作 v v v阶Bessel函数。

ρ 2 = − v \rho_2=-v ρ2=v,则称作 − v -v v阶Bessel 函数, y 2 ( x ) = J − v ( x ) = ∑ k = 0 ∞ ( − 1 ) k 1 k ! Γ ( − v + k + 1 ) ( x 2 ) 2 k − v y_2(x)=J_{-v}(x)=\sum_{k=0}^{\infty}(-1)^k\frac{1}{k!\Gamma(-v+k+1)}(\frac{x}{2})^{2k-v} y2(x)=Jv(x)=k=0(1)kk!Γ(v+k+1)1(2x)2kv

J v ( x ) , J − v ( x ) J_v(x),J_{-v}(x) Jv(x),Jv(x)称为第一类柱函数

①若 v ≠ n v\neq n v=n(整数) , J v ( x ) J_v(x) Jv(x) J − v ( x ) J_{-v}(x) Jv(x)是线性无关

y ( x ) = a v J v ( x ) + b v J − v ( x ) y(x)=a_vJ_v(x)+b_vJ_{-v}(x) y(x)=avJv(x)+bvJv(x)

②若 v = n v= n v=n(整数) , J − v ( x ) = ( − 1 ) n J v ( x ) J_{-v}(x)=(-1)^nJ_v(x) Jv(x)=(1)nJv(x)

J n J_n Jn J − n J_{-n} Jn线性相关,须构建其他与 J n ( x ) J_n(x) Jn(x)线性无关的函数。

Bessel函数的性质

贝塞尔函数的本征值:

{ r R ′ ′ ( r ) + r R ′ ( r ) + [ ( k r ) 2 − n 2 ] R ( r ) = 0 R ( r ) ( r → 0 ) 有 限 [ α d R d r + β R ] ∣ r = a = 0 \left\{\begin{array}{l} r R^{\prime \prime}(r)+r R^{\prime}(r)+\left[(k r)^{2}-n^{2}\right] R(r)=0\\ R(r)_{(r\rightarrow0)}有限 \\ \left. \left[\alpha \frac{d R}{d r}+\beta R\right]\right|_{r=a}=0 \end{array}\right. rR(r)+rR(r)+[(kr)2n2]R(r)=0R(r)(r0)[αdrdR+βR]r=a=0

R m n ( P ) = R ( k m n P ) R_m^n(P)=R(k_m^nP) Rmn(P)=R(kmnP)

R ( r ) = J n ( k r ) R(r)=J_n(kr) R(r)=Jn(kr) k 2 = λ − μ k^2=\lambda-\mu k2=λμ,令 x = k r x=kr x=kr

α = 0 \alpha=0 α=0这种第一类齐次边界条件为例

J n ( k r ) ∣ r = a = J n ( k a ) = 0 \left.J_{n}(k r)\right|_{r=a}=J_n(ka)=0 Jn(kr)r=a=Jn(ka)=0,零根 x m n x_m^n xmn是使 J n ( k a ) = 0 J_n(ka)=0 Jn(ka)=0 n n n阶贝塞尔方程的第 m m m个零根, { k m a a = x m n m = 1 , 2 , ⋯ \left\{\begin{array}{l} k_{m}^{a} a=x_{m}^{n}\\ m=1,2, \cdots \end{array}\right. { kmaa=xmnm=1,2,, k m n k_m^n kmn n n n阶贝塞尔方程的第 m m m个本征值,第 m m m个本征函数 J n ( k m n r ) = J n ( x m n α r ) J_n(k_m^nr)=J_n(\frac{x_m^n}{\alpha}r) Jn(kmnr)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值