python panda是什么_python pandas浅析

本文介绍了Python数据分析库pandas的基础知识,包括Series、DataFrame、Index等数据结构,并列举了如导入数据、查看维度、更改列名、数据合并等常用操作。pandas为高效处理大型数据集提供了丰富的函数和方法,是Python数据分析的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前一直想自学一下大数据,正好七月在线在做1元优惠购活动,所以机缘巧合开始学习,今天就对最近学习的pandas进行一个笔记梳理,以便后续回顾。本次课程主要学习了以下内容:

一. 简介

pandas 是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

通俗的说,pandas就是对表格对数据进行分析,它主要包括以下几个部分:

1. Series, 它是对一位数据的封装(key value pairs);

2. DataFrame,它是一个数据结构,可以看成是一个表格,是Series的容器;

3. Index, 索引;

4. Merge,append, Join,concat。

二. 常用操作

1.导入pandas库:

一般导入pandas时都会一起numpy,

import numpy as np

import pandas as pd

2.导入CSV/XLSX

df = pd.DataFrame(pd.read_csv("test.csv", header=1))

df = pd.DataFrame(pd.read_excel("test.xlsx"))

3. 维度查看

df.shape

4. 每一列数据的格式

df.dtypes

5. 查看数据表的值

df.values

6. 查看列名称

df.columns

7. 更改列名称

df.rename(columns={“category”: “category-size”})

8.数据表合并

Merge,append, Join,concat

9. 设置索引列

df..set_index(“id”)

10.数据提取

主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。

11.简单的数据采样

df.sample(n=3)

以上只是一部分我觉得常用的函数,pandas是一个很强大的工具,如果需要去熟练它,光靠这么一节课是不行的,这堂课只是一个引导,让你知道pandas是干什么的,在什么场景你可能需要用到它,等真正需要用到的时候怎么去查询。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值