- 博客(42)
- 收藏
- 关注
原创 【Google Colab】使用手册、教程;使用 Google Colab 免费使用 python 服务器
时常需要跑数十个小时的来训练模型。奈何自己电脑的性能不过好,而谷歌 Colab 又没有GUI而且还限时。就在我一筹莫展的时候,突然发现了一个可以开启 Colab 桌面版的方法。下面的单元格确保您能够访问Colab上的TPU。用法和GPU一样,只是模型训练的过程中需要添加一行代码。建议先用 pip list 看当前的 torch 版本,再查找对应的 cloud-tpu-client 的版本 和 torch_xla 的版本(见。但是速度好像还不如 GPU,甚至不如CPU。右键获取某个文件的链接后,可以通过。
2022-11-15 18:56:11 1308 1
原创 【python】class 类;参数传递问题
class Circle(object) : # 创建Circle类,Circle为类名 pass # 此处可添加属性和方法注意:我们定义的类都会继承于object类,当然也可以不继承object类;两者区别不大,但没有继承于object类使用多继承时可能会出现问题。有了Circle类的定义,就可以创建出具体的circle1、circle2等实例,circle1和circle2是个实际的圆。创建实例使用 类名+(),类似函数调用的形式创建。
2022-11-15 18:55:43 2714
原创 python--filter()函数
filter() 函数用于过滤列表形式的序列,过滤掉不符合条件的元素,返回由符合条件元素组成的,并以迭代器对象的形式返回。
2022-11-15 18:54:55 569
原创 python-pandas用法大全
我想要让列按照 [“0 probability”, “1 probability”, …当然,这里的 by参数 也可以是一个列表,表示优先满足第一排序,在满足第二排序…问题描述:想要把 DataFrame 最后一列 label 的数据格式从。的表头不一样(顺序不一样或是部分feature不一样),则需要用到。在表头顺序一样的情况下,可以这样无脑连接两个。如果以某一列为“辨识列”,则需要用到。如果两个表头顺序不一样,修改参数。的名称进行修改,我们采用。读取时要注意的参数有。,即可,他会自动识别。
2022-11-15 18:51:05 6827
原创 【python】常见的正则表达式用法;匹配字符串
本文仅仅展现了python正则表达式中的一小部分内容,但是包含了实际应用中非常被频繁使用的例子,本文重在举例,即~
2022-11-15 18:49:50 3425
原创 【python】声明异常;异常处理;异常中断;assert;raise
使用assert是学习python的一个非常好的习惯,在没完善一个程序之前,我们不知道程序在哪里会出错,与其让它在运行时崩溃,不如在出现错误条件时就崩溃。a = - 1 assert a > 0 , "a超出范围" #这句的意思:如果a确实大于0,程序正常往下运行,否则报错 aasertionerror。
2022-11-15 18:48:21 222
原创 Isotonic regression--保序回归
∑iwi(yi−y^i)2∑iwi(yi−y^i)2y^i≤y^jy^i≤y^jwheneverXi≤XjXi≤Xj,wwwXXXandyyyarearbitrary real quantities(任意实数).y^i≥y^jy^i≥y^jwheneverXi≤XjXi≤X。
2022-11-15 18:47:40 631
原创 python--下划线的含义和用法
一个python的文件有两种使用的方法,第一是直接作为脚本执行,第二是import到其他的python脚本中被调用(模块重用)执行。再具体一点,当我运行这个脚本的时候,如果所运行的py文件 在 当前的sys.path(也就是红框部分的路径)里面,那么。,而 import 到其他脚本中是不会被执行的。如果当前文件不包含在sys.path里面,那么,如果当前文件包含在sys.path里面,那么,的作用就是控制这两种情况执行代码的过程,在。:去掉脚本的文件名,返回目录。返回的基本就是运行命令。
2022-11-15 18:46:15 274
原创 【sklearn】数据预处理之LabelEncoder()、OneHotEncoder()
注意 OneHotEncoder(sparse=),不然返回的就是索引值的形式。
2022-11-15 18:45:18 864
原创 【python】字符串前加u,r,b,f的含义
后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出现乱码。(特殊字符:即那些,反斜杠加上对应字母,表示对应的特殊含义的,比如最常见的”\n”表示换行,”\t”表示Tab等。例:r"\n\n\n\n” 表示一个普通生字符串 \n\n\n\n,而不表示换行了。如:send 函数的参数和 recv 函数的返回值都是 bytes 类型。b" "前缀表示:后面字符串是bytes 类型。例:u"我是含有中文字符组成的字符串。去掉反斜杠的转移机制。
2022-11-01 16:46:48 140
原创 【python】关于文件夹的一些操作
os.walk(top, topdown=True, onerror=None, followlinks=False),通过“自上而下”或“自下而上”来遍历目录,生成目录树中的。os.scandir(path),返回path目录树中对应的os.DirEntry对象的迭代器(文件夹或文件),,但运行效率比os.walk高,Python官方推荐使用os.scandir来遍历目录树。,但不包含子文件夹里的文件夹和文件,并按照目录树结构的排序输出结果,即。返回的,有三个结果,分布是文件夹路径、文件夹名称和文件名。
2022-10-30 13:05:10 120
原创 【python】关于文件夹的一些操作
os.walk(top, topdown=True, onerror=None, followlinks=False),通过“自上而下”或“自下而上”来遍历目录,生成目录树中的。os.scandir(path),返回path目录树中对应的os.DirEntry对象的迭代器(文件夹或文件),,但运行效率比os.walk高,Python官方推荐使用os.scandir来遍历目录树。,但不包含子文件夹里的文件夹和文件,并按照目录树结构的排序输出结果,即。返回的,有三个结果,分布是文件夹路径、文件夹名称和文件名。
2022-10-30 13:04:38 317
原创 with open()和np.load() 数组的读取保存
如果你想将多个数组保存到一个文件中的话,可以使用numpy.savez函数。savez函数的第一个参数是自定义的文件名,其后的参数都是需要保存的数组变量,也可以使用关键字参数为数组起一个名字,非关键字参数传递的数组会自动起名为arr_0, arr_1, …要读取二进制文件,比如图片、视频等等,用’rb’模式打开文件即可。如果用 with open(‘data.txt’, ‘w’) as f: 这样保存的汉字再打开将会是乱码,说明只有两个文件,所以我可以他们的名字,具体地打开他们。不重要的参数我就没写啦。
2022-10-30 13:03:49 509
原创 python文件读read()、readline()、readlines()对比
特点:readline()方法每次读取一行;返回的是一个字符串对象,保持当前行的内存。劣势是:如果文件非常大,尤其是大于内存时,无法使用read()方法。readlines()读取所有行然后把它们作为一个字符串列表返回。readline() 读取整行,包括行结束符,并作为字符串返回。特点:一次性读取整个文件;自动将文件内容分析成一个行的列表。特点是:读取整个文件,将文件内容放到一个字符串变量中。read()直接读取字节到字符串中,包括了换行符。缺点:比readlines慢得多。
2022-10-30 13:03:03 178
原创 【Tensorflow】gpu&pytorch(GPU) 安装、使用教程
NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。CUDA的本质是一个工具包(ToolKit);但是二者虽然不一样的。
2022-10-30 12:51:14 433
原创 【Latex】表格样例大全
fontsize{字号}{行距}这个命令对其后所有文本都起作用,在使用此命令后需要用 \selectfont 才能使字体大小设置起作用。
2022-10-30 12:45:22 892
原创 【Latex】表格样例大全
fontsize{字号}{行距}这个命令对其后所有文本都起作用,在使用此命令后需要用 \selectfont 才能使字体大小设置起作用。
2022-10-30 12:44:38 535
原创 Latex大全
本文介绍了latex中常用的功能因为符号更常用,所以放到前面了。字母样式第一行是罗马体,第二行是斜体,第三行类似于斜体斜体(强烈推荐用于文本)语法 :Precision\textit{Precision}Precision语法 :正粗体(强烈推荐用于文本)语法 :Precision\textbf{Precision}Precision斜粗体(强烈推荐用于文本)语法 :Precision\textbf{\textit{Precision}}Precision语法 :上述三种用于文本,其余用
2022-10-30 12:43:41 444
原创 Tex Live & TeXstudio安装及配置
可以这样说,TeXlive是TeX的一个发行版,适用于Windows和Linux系统,给TeX的使用提供了工作环境,大概可以理解为Java的JDK?TeXstudio则优于TeXlive自带的TeXwork editor编辑器,大概可以理解为Java的各种编译器?
2022-10-30 12:32:58 122
原创 【pytorch】跟着例子学pytorch
在底层,每个原语autograd运算符实际上是两个作用于张量的函数。forward函数从输入张量计算输出张量。backward接收到输出张量相对于某个标量值的梯度,然后计算输入张量相对于该标量值的梯度。在PyTorch中,通过定义torch.autograd的子类,我们可以很容易地定义自己的autograd操作符。函数,并实现forward和backward函数。然后,我们可以通过构造一个实例并像调用函数一样调用它来使用新的autograd运算符,传递包含输入数据的张量。在本例中,我们将模型定义为。
2022-10-28 10:49:32 106
原创 【pytorch】分析解释模型 pytorch + captum
参考网站:https://github.com/pytorch/captumhttps://captum.ai/api/https://captum.ai/api/layer.html#layer-activation我们先来看一下这个包是用来干嘛的:The primary audiences for Captum are model developers who are looking to improve their models and understand which features are
2022-10-28 10:46:56 243
原创 【pytorch】预训练模型的使用
pytorch自带有一些高级的复杂模型,我们可以通过调用,例如就调用了densenet169的预训练模型。见获取详细信息。
2022-10-28 10:46:16 1086
原创 【pytorch】FL联邦学习 数据集的划分+non-iid数据集的划分
torchvision.datasets里的数据集都是整一个的,尤其在联邦学习中,我们需要划分不同的数据集给不同的参与者,如何将torchvision中的数据集划分成为了联邦学习中的重大挑战。在联邦学习场景下,各方的数据理应不为同分布,即不满足iid,因此在模拟时不能随机进行数据分配,应该适当调整下发给各client的数据分布。类的数据,其他数据分布都等概率,实际运用中其实可以没有必要规定等概率,仅限定 第。随机分配样本,返回的是每个client的索引。类数据出现的概率就好了。唯一的缺点是 除了第。
2022-10-28 10:39:22 1194 1
原创 【pytorch】正态分布(高斯分布)、Q函数、误差函数、互补误差函数
则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,记作。这个函数可以看作是高斯分布函数的不定积分,如何相互转换见第5节的图6.2.时,称为标准正态分布。一般正态分布的分布函数。标准正态分布的分布函数。如下图是一般正态分布。如下图是标准整体分布。
2022-10-28 10:36:52 943
原创 【pytorch】教程——以CIFAR10为例
有关模型的定义、参数查看和训练;卷积层计算规则;模型修改的小技巧,请参考:https://blog.csdn.net/weixin_42468475/article/details/108628474?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22108628474%22%2C%22source%22%3A%22weixin_42468475%22%7Dtorchvisio
2022-10-28 10:35:07 476
原创 【pytorch】模型的保存、读取、查看模型参数
model.state_dict() 会以字典的方式打印模型的全部参数,如果模型参数过多,查看起来就很不方便,可以用。Output Shape里的 -1 是表示样本数量的意思,值得注意的是,池化层是没有参数的,卷积层是有参数的,将初始化的模型转换为CUDA优化模型。用法同3.1 只不过不会返回每一层的名字,并且需要用list()包裹。会返回一份在GPU上的my_tensor的拷贝。在把GPU上训练的模型加载到GPU上时,只需要使用。当在CPU上加载一个GPU上训练的模型时,在。不推荐这么做,很容易报错。
2022-10-28 10:33:39 625
原创 【pytorch】模型的定义、参数查看和训练;卷积层计算规则;模型修改的小技巧
定义完forward()函数后,这个框架会自动使用autograd定义backward()函数。nn . functional . relu(torch . tensor([ [ [ [ 5 , 5 , 5 , - 5.0 ] ] ] ])) nn . ReLU()(torch . tensor([ [ [ [ 5 , 5 , 5 , - 5.0 ] ] ] ])) 注意使用时ReLU(中的参数inplace = True)
2022-10-28 10:24:59 368
原创 【pytorch】模型的定义、参数查看和训练;卷积层计算规则;模型修改的小技巧
定义完forward()函数后,这个框架会自动使用autograd定义backward()函数。nn . functional . relu(torch . tensor([ [ [ [ 5 , 5 , 5 , - 5.0 ] ] ] ])) nn . ReLU()(torch . tensor([ [ [ [ 5 , 5 , 5 , - 5.0 ] ] ] ])) 注意使用时ReLU(中的参数inplace = True)
2022-10-27 10:55:39 133
原创 【pytorch】DataLoader(数据迭代器) 包含多种DataLoader的生成方法
本博客讲解了pytorch框架下的多种用法,每一种方法都展示了实例,虽然有一点复杂,但是小伙伴静下心看一定能看懂哦 :)个人建议,在1.1.1节介绍的三种方法中,推荐 (方法三实在是过于复杂不做推荐),另外,第三节中的处理示例使用了非的方法进行数据集处理,也可以借鉴~我们一般使用一个for循环(或多层的)来训练神经网络,每一次迭代,加载一个batch的数据,神经网络前向反向传播各一次并更新一次参数。而这个过程中加载一个batch的数据这一步需要使用一个torch.utils.data.DataLoad
2022-10-27 10:54:56 1538
原创 【pytorch】torchvision.transforms 图像的变换详解;图像的预处理;数据增强
torchvision.transforms是包含一系列常用图像变换方法的包,可用于图像预处理、数据增强等工作,但是注意它更适合于classification等对数据增强后无需改变图像的label的情况,对于Segmentation等对图像增强时需要同步改变label的情况可能不太实用,需要自己重新封装一下。
2022-10-27 10:53:54 557
原创 【pytorch】用cuda(GPU)处理数据
考虑到各种运算只能在cpu或者gpu运算,不能混和运算,本文介绍常用的几种把数据挪到gpu或者直接在gpu创建数据再进行运算的方法。
2022-10-27 10:52:45 712
原创 【matplotlib】绘图函数中常用参数;使用大全——持续更新
本文讲的是与plot(), scatter(), pyplot()等绘图函数中常用的参数。
2022-10-27 10:51:31 339
原创 【pytorch】tensor的复制避坑;tensor.clone() & tensor.detach() 详解
我原以为 b = a.data 就是开辟一个新空间给 b变量,然后修改 b 的值时 a 的值不会因此变化,谁知道即使用了.data属性,修改 b 的值后 a 的值依然会发生变化。后来上网查找,发现无论是用 b = a,还是 b = a.data,变量a和b的关系都没有断开,下面介绍两种函数,请注意区分!
2022-10-27 10:49:53 1703
原创 【pytorch】torch.tensor的求导;矩阵求导;求二阶导;导数
参数的作用:矩阵y中,第一个元素 y[0,0] 对矩阵x 的导数是【1,2,3】,第二个元素 y[1,0] 对矩阵x 的导数是【6,3,2】,根据 两个元素对应的梯度矩阵权重都为1可得,最终累计到x上的grad=【1。注意的是,矩阵对矩阵求导得到的其实是3维的矩阵,也可以说是4维的,第一维是F(n)每个元素(如果分成4维则第一第二维度是F(n)的行和列),第二维是自变量矩阵的行,第三维是自变量矩阵的列。若有 c 是 a,b 的函数,d 又是 c 的函数,下面我们来用程序验证导数的链式法则,即。
2022-10-27 10:34:18 779
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人