python self太多_python multiprocessing.Pool太多文件打开日志文件

在四核Ubuntu系统上运行Python脚本时遇到`Too many open files`错误。脚本使用多进程Pool处理任务,每个进程创建一个日志文件。问题在于文件句柄未被正确关闭,导致大量打开的文件。调试显示有16K文件处于打开状态。解决方案可能涉及优化日志管理和资源释放策略。
摘要由CSDN通过智能技术生成

这是关于Too many files open with multiprocessing.Pool

我有类似的问题.我的设置是运行此简单脚本的四核Ubuntu(运行python 2.7 with pathos == 0.2a1.dev,pathos仅用于允许mp map与类方法一起使用)为每个进程记录一个单独的文件.

python为什么不关闭记录器文件???

这是代码…

import multiprocessing

from pathos.multiprocessing import ProcessingPool

import logging

class CreateLogger(object):

def create_logger(self, i):

i = str(i)

logger = logging.getLogger(i)

hdlr = logging.FileHandler('/tmp/test/{0}.log'.format(i))

formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')

hdlr.setFormatter(formatter)

logger.addHandler(hdlr)

logger.setLevel(logging.WARNING)

logger.info('{0}-test'.format(i))

logger.propagate = 0

if __name__ == '__main__':

cl = CreateLogger()

ilist = range(30000)

pool = ProcessingPool(multiprocessing.cpu_count())

pool.map(cl.create_logger, ilist)

错误是:

pydev debugger: starting (pid: 21825)

Traceback (most recent call last):

File "/opt/eclipse/plugins/org.python.pydev_3.8.0.201409251235/pysrc/pydevd.py", line 2183, in

globals = debugger.run(setup['file'], None, None)

File "/opt/eclipse/plugins/org.python.pydev_3.8.0.201409251235/pysrc/pydevd.py", line 1622, in run

pydev_imports.execfile(file, globals, locals) # execute the script

File "/home/amit/workspace/amit/device_polling/tests/simple_mp_test.py", line 21, in

pool.map(cl.create_logger, ilist)

File "/miniconda/envs/test/lib/python2.7/site-packages/pathos-0.2a1.dev-py2.7.egg/pathos/multiprocessing.py", line 123, in map

return _pool.map(star(f), zip(*args)) # chunksize

File "/miniconda/envs/test/lib/python2.7/site-packages/processing/pool.py", line 130, in map

return self.mapAsync(func, iterable, chunksize).get()

File "/miniconda/envs/test/lib/python2.7/site-packages/processing/pool.py", line 373, in get

raise self._value

IOError: [Errno 24] Too many open files: '/tmp/test/15336.log'

您会看到太多文件打开错误始于15336.在调试该脚本时,我看到有16K文件正在打开此脚本

amit@sharknado:/tmp/test$lsof -u amit | grep test | wc -l

lsof: WARNING: can't stat() fuse.gvfsd-fuse file system /run/user/112/gvfs

Output information may be incomplete.

16622

amit@sharknado:/tmp/test$

以下是一个示例代码,展示如何在类中使用`multiprocessing.apply_async`和`multiprocessing.Manager`: ```python import multiprocessing class MyManager(object): def __init__(self): self.manager = multiprocessing.Manager() self.my_list = self.manager.list() def add_item(self, item): self.my_list.append(item) def process_item(self, item): # Do some processing on the item return processed_item def process_items(self): with multiprocessing.Pool() as pool: for item in self.my_list: pool.apply_async(self.process_item, args=(item,), callback=self.add_item) # Wait for all processes to finish pool.close() pool.join() if __name__ == '__main__': manager = MyManager() manager.add_item('item1') manager.add_item('item2') manager.process_items() print(manager.my_list) ``` 在这个示例中,我们首先创建了一个`MyManager`类,并在类的构造函数中初始化了一个`multiprocessing.Manager`对象和一个共享列表`my_list`。然后,我们定义了一个`add_item`方法,用于向共享列表中添加新的项目。 接下来,我们定义了`process_item`方法,该方法对每个项目进行处理,并返回处理后的结果。 最后,我们定义了`process_items`方法,该方法使用`multiprocessing.Pool`创建一个进程池,并使用`apply_async`方法异步处理每个项目。我们还将`add_item`方法作为回调函数传递给`apply_async`,以便在处理完成后将结果添加到共享列表中。 在主函数中,我们创建了一个`MyManager`对象,并向其中添加了两个项目。然后,我们调用了`process_items`方法来处理这些项目,并在处理完成后打印了共享列表中的所有项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值