用到的主要有Matplotlib、Pykrig俩包,首先载入需要的数据文件
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from scipy.interpolate import griddata
import cmaps
# 用来正常显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
# 获取污染物分布数据,其中包括维度、经度(或者以其他坐标系表示的x和y值),和其他需要图形展现的污染物数据或者地形高度z值
df = pd.read_csv(r'E:\\xxxxx your pathway and you filename.dat',encoding='gbk')
# 剔除无效值NAN
df = df.dropna(axis=0, how='any')
# 获取纬度
lat = np.array(df["X"][:])
# 获取经度
lon = np.array(df["Y"][:])
# 获取温度数据,这里也可以是污染物数据或者地形高度z值
Temp = np.array(df["1-2m"][:])
# 创建格网1这种方法我还没看