泰坦尼克号数据集_python_泰坦尼克号数据分析报告

泰坦尼克号数据可视化分析报告

b04ca0b3b88afd52b6338e6231d13b64.png

1. 提出问题

泰坦尼克号作为一部感人至深的电影流传至今,作为数据分析领域的一员,也站在数据分析的角度对其进行一些思考和分析,究竟什么样的人在泰坦尼克号更容易生还?

2.理解数据

2.1 采集数据

从Kaggle泰坦尼克号项目界面下载数据:Kaggle泰坦尼克号项目

2.2 导入数据

import 

2.3 查看数据集信息

print

由上面信息可看出,数据集共有1309行,其中Survived,Age,Fare,Cabin,Embarked 5个字段有缺失值,Cabin缺失率最高。

3. 数据清洗

3.1 数据预处理(缺失值处理)

缺失值常见处理方式:数值类型用平均值替代,分类数据用最常见类别替代或用U(Unkonwn) 替代

print

3.2 特征工程

3.2.1 数据分类

  1. 数值类型:乘客编号(PassengerId),年龄(Age),船票价格(Fare),同代直系亲属人数(SibSp),不同代直系亲属人数(Parch)
  2. 时间序列:无
  3. 分类数据:1)有直接类别的:乘客性别(Sex),登船港口(Embarked),客舱等级(Pclass):1=1等舱,2=2等舱,3=3等舱;2)字符串类型:乘客姓名(Name),客舱号(Cabin),船票编号(Ticket)

3.2.2 分类数据:直接类别型

乘客性别(Sex)

# 对性别进行0,1赋值

登船港口(Embarked)

# 使用get_dummies 对Embarked进行one-hot编码

客舱等级(Pclass)

# 使用get_dummies 对Pclass进行one-hot编码

3.2.2 分类数据:字符串类型

乘客姓名(Name)

full

客舱号(Cabin)

full

3.2.3 数值类型:同代直系亲属人数(SibSp),不同代直系亲属人数(Parch)

建立家庭人数和家庭类别

# 同代直系+不同代直系+自己

3.2.3 特征选择

# 查看各特征的相关系数

由上可知,Survived与Mrs和Mrss正相关性,和Mr负相关性,有可能当时逃生遵守了女士优先的原则。

根据各个特征与生成情况(Survived)的相关系数大小,我们选择了这几个特征作为模型的输入:

头衔(前面所在的数据集titleDf)、客舱等级(pclassDf)、家庭大小(familyDf)、船票价格(Fare)、船舱号(cabinDf)、登船港口(embarkedDf)、性别(Sex)

# 特征选择

4. 构建模型

4.1 建立训练数据集和测试数据集

sourceRow

4.2 选择及训练模型

# 使用逻辑回归

5. 模型评估

model

6. 方案实施

# 对预测数据集进行预测

附:可视化

柱状图

import 

975a0fff9e798ea638f2e930910f5587.png
泰坦尼克号数据_泰坦尼克号数据分析报告 891名乘客中遇难乘客有549⼈,占61.6%,⽣还乘客342⼈,占38.4%.各等级船舱乘客⼈数 各等级船舱乘客⼈数 Pclass_count=titanic_data['Pclass'].value_counts().sort_index() #⽤Bar_pie()函数作条形图饼状图 Bar_pie(Pclass_count) 三等船舱乘客最多,占55.1%;⼀等船舱次之占24.2%;⼆级船舱乘客最少,占20.7%.男⼥乘客分布情况 男⼥乘客分布情况 Sex_count=titanic_data['Sex'].value_counts() print(Sex_count) Bar_pie(Sex_count) male 577 female 314 Name: Sex, dtype: int64 男乘客有577⼈,占64.8%;⼥乘客有314⼈,占35.2%.乘客年龄分布情况 乘客年龄分布情况 In [84]: #乘客年龄分布直⽅图 #创建figure、subplot,并⽤hist作条形图 fig_Age=plt.figure(figsize=(10,5)) ax_Age=fig_Age.add_subplot(1,2,1) titanic_data['Age'].hist(bins=10,color='g',alpha=0.3,grid=False) #设置x轴刻度标签 ax_Age.set_xticks([0,10,20,30,40,50,60,70,80,90,100]) #添加标题,x轴标签,y轴标签 ax_Age.set_title('Hist plot of Age') ax_Age.set_xlabel('Age') ax_Age.set_ylabel('number of people') #乘客年龄分布箱线图 #作箱线图 plt.subplot(122) titanic_data.boxplot(column='Age',showfliers=False) #添加y轴标签 plt.ylabel('Age') plt.title('boxplot of Fare') titanic_data['Age'].describe() count 891.000000 mean 29.544332 std 13.013778 min 0.000000 25% 22.000000 50% 29.000000 75% 35.000000 max 80.000000 Name: Age, dtype: float64 乘客年龄⼤概成正态分布,平均年龄29岁多,最⼤的80岁,最⼩的不到1岁(利⽤int()取整,不到1岁的为0).兄弟姐妹、配偶在船上的 兄弟姐妹、配偶在船上的 乘客分布情况条形图 乘客分布情况条形图 #创建figure、subplot,⽤plot()作柱状图 fig_SibSp=plt.figure(figsize=(10,5)) ax_SibSp=fig_SibSp.add_subplot(1,2,1) SibSp_count=titanic_data['SibSp'].value_counts() SibSp_count.plot(kind='bar') #添加标题,x轴标签,y轴标签 ax_SibSp.set_title('Bar plot of SibSp') ax_SibSp.set_xlabel('number of SibSp') ax_SibSp.set_ylabel('number of people') #拥有各 数量的兄弟姐妹、配偶的乘客⽐例条形图 plt.subplot(122) SibSp_count.div(SibSp_count.sum()).plot(kind='bar') #添加标题,x、y轴 标签 plt.title('Ratio of people in SibSp') plt.xlabel('SibSp') plt.ylabel('ratio') 在船上没有兄弟姐妹配偶的乘客较多,占68.2%.⽗母、孩⼦在船上的乘客分布条形图 ⽗母、孩⼦在船上的乘客分布条形图 Parch_count=titanic_data['Parch'].value_counts() #创建figure、subplot,⽤plot()作柱状图 fig_Parch=plt.figure(figsize=(10,5)) ax_Parch=fig_Parch.add_subplot(1,2,1) Parch_count.plot(kind='bar') #添加标题,x、y轴标签 ax_Parch.set_title('Bar plot of Parch') ax
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值