图像同态滤波 python实现_进行图像增广的15+种功能总结和Python代码实现

python代码可以自己扩充图像数据集。

8d36e1f0d7221b42edda73eb498b8787.png

无论我们喜欢Keras还是Pytorch,我们都可以使用丰富的资料库来有效地增广我们的图像。 但是如果遇到特殊情况:

  • 我们的数据集结构复杂(例如3个输入图像和1-2个分段输出)。
  • 我们需要完全的自由透明度
  • 我们希望进行这些库未提供的扩充方法。

对于这些情况以及其他特殊情况,我们必须能够掌握我们自己的图像增广函数。 而且,我每次都使用自己的函数。 因此,在本文中,我将介绍并提供执行图像增广的功能。

5b164180a05a568a1d605bf3c42f67ad.png

我将使用朋友的照片来提醒我在加拿大度过的美好时光作为示例。 希望您喜欢这张照片,因为这是您在本文中看到的唯一一张照片。

我将增广过程细分为一个实际的案例,将我们的函数与图像和目标图像一起使用。 这将使您对将要描述的方法的灵活性有所了解:

  • 翻转
  • 裁剪
  • 过滤和锐化
  • 模糊
  • 旋转,平移,剪切,缩放
  • 剪下
  • 色彩
  • 亮度
  • 对比
  • 均匀和高斯噪声
  • 渐变
  • 镜头变形

本文的目的不是为了证明增广技术是如何设计的,而是理解它们的用法。

一些有用的函数

在开始之前,我想解释每种方法具有的通用结构。 它实际上是一个要初始化的对象。 该对象将以我们的样本作为参数调用,并将返回我们的扩充样本。 这就是全部? 是的,仅此而已! 然后,让我们从增广功能之前的一些有用函数开始。

Resize

c595136cf72a3a92e5579b6d93b3cc67.png

第一个有用的函数允许我们使用(宽度,高度)形状调整图像大小。 这个使我们看到了所有其他的初始化方式。 我们实例化一个对象,该对象的大小被参数化。 在我们的例子中,所有样本(图像和目标)将以相同的尺寸返回。 使用此类型的功能,我们可以轻松地以所需方式处理图像和目标。

class Resize(object):    def __init__(self, output_size):        self.output_size = output_size​    def __call__(self, X, Y):        _X = cv2.resize(X, self.output_size)        w, h = self.output_size        c = Y.shape[-1]        _Y = np.zeros((h, w, c))        for i in range(Y.shape[-1]):            _Y[..., i] = cv2.resize(Y[..., i], self.output_size)        return _X, _Y

Clip

139dcae09b1ab5141fd96ea118eb8109.png

剪辑函数是一项非常有用的函数,尤其是当您需要从一种颜色空间切换到另一种颜色空间或在0和1或0和255之间重置图像时。

默认情况下,如果仅指定一个阈值,则最小阈值为0。

class Clip(object):    def __init__(self, mini, maxi=None):        if maxi is None:            self.mini, self.maxi = 0, mini        else:            self.mini, self.maxi = mini, maxi​    def __call__(self, X, Y):        mini_mask = np.where(X < self.mini)        maxi_mask = np.where(X > self.maxi)        X[mini_mask] = self.mini        X[maxi_mask] = self.maxi        return X, Y

Normalize or Standardize

5ec682adb8bf761de7b5d728177f1e16.png

在传递模型中的输入之前,我们通常希望对数据进行标准化规范化。 当然,这些操作可以在特定的上完成。

默认情况下,对整个图像执行标准化和规范化。

class Normalize(object):    def __init__(self, axis=None):        self.axis = axis​    def __call__(self, X, Y):        mini = np.min(X, self.axis)        maxi = np.max(X, self.axis)        X = (X - mini) / (maxi - mini)        return X, Y​class Standardize(object):    def __init__(self, axis=None):        self.axis = axis​    def __call__(self, X, Y):        mean =  np.mean(X, self.axis)        std = np.std(X, self.axis)        X = (X - mean) / std        return X, Y

ToTensor

最后,如果您使用的是Pytorch,则需要将图像转换为Torch.Tensor。 唯一需要注意的是,使用Pytorch,我们的图像维度中首先是通道,而不是最后是通道。 最后,我们还可以选择张量的输出类型

class ToTensor(object):    def __init__(self, X_type=None, Y_type=None):        # must bu torch types        self.X_type = X_type        self.Y_type = Y_type​    def __call__(self, X, Y):​        # swap color axis because        # numpy img_shape: H x W x C        # torch img_shape: C X H X W        X = X.transpose((2, 0, 1))        Y = Y.transpose((2, 0, 1))​        # convert to tensor        X = torch.from_numpy(X)        Y = torch.from_numpy(Y)​        if self.X_type is not None:            X = X.type(self.X_type)        if self.Y_type is not None:            Y = Y.type(self.Y_type)        return X, Y

怎么使用?

我们要做的就是定义我们要在样本中进行的转换的列表,仅此而已。 之后我们什么也别碰。 请注意,转换顺序很重要。 而且由你决定

X, Y = get_next_sample()​    for t in transform: # data augmentation        X, Y = t(X, Y)​    pred = model.predict(X, Y)

现在,我们可以深入研究本文的目的,并查看图像增广技术。

旋转

7d64040e78f9f2f1f1ae7988ba9ba8ed.gif

第一个,也是最简单的一个,包括在图像的水平垂直轴上随机执行翻转。 换句话说,执行垂直翻转的机会为50/100,执行水平翻转的机会为50/100。

class Flip(object):    def __call__(self, X, Y):        for axis in [0, 1]:            if np.random.rand(1) < 0.5:                X = np.flip(X, axis)                Y = np.flip(Y, axis)        return X, Y

裁剪

f4a46e74ddb1a635ab7bc751ddb5606f.gif

要进行图像增广,通常会随机裁剪图像。 换句话说,我们在随机区域上裁剪了一部分随机大小的图像。

可以从尺寸的比例(高度,宽度)中选择裁剪图像的尺寸。 如果未指定裁剪的比例最大大小,则默认情况下,我们将认为它是图像的大小。

class Crop(object):    def __init__(self, min_size_ratio, max_size_ratio=(1, 1)):        self.min_size_ratio = np.array(list(min_size_ratio))        self.max_size_ratio = np.array(list(max_size_ratio))​    def __call__(self, X, Y):        size = np.array(X.shape[:2])        mini = self.min_size_ratio * size        maxi = self.max_size_ratio * size        # random size        h = np.random.randint(mini[0], maxi[0])        w = np.random.randint(mini[1], maxi[1])        # random place        shift_h = np.random.randint(0, size[0] - h)        shift_w = np.random.randint(0, size[1] - w)        X = X[shift_h:shift_h+h, shift_w:shift_w+w]        Y = Y[shift_h:shift_h+h, shift_w:shift_w+w]​        return X, Y

过滤器

一般情况

我们将开始一些有趣的事情。 过滤器是很棒的方法,但我认为能够轻松创建我们自己的卷积过滤器非常重要。

所以我想做一个通用的函数,以便能够使用我们自己的过滤器。

class CustomFilter(object):    def __init__(self, kernel):        self.kernel = kernel​    def __call__(self, X, Y):        X = cv2.filter2D(X, -1, self.kernel)        return X, Y

锐化

就过滤器而言,可以通过选择上游过滤器并以随机权重应用过滤器来进行进一步处理。 例如,我向您介绍用于锐化图像的过滤器。

550542907ad86f847deb08761093a13b.png

​中心值从0到65。​

class Sharpen(object):    def __init__(self, max_center=4):        self.identity = np.array([[0, 0, 0],                                  [0, 1, 0],                                  [0, 0, 0]])        self.sharpen = np.array([[ 0, -1,  0],                                [-1,  4, -1],                                [ 0, -1,  0]]) / 4​    def __call__(self, X, Y):​        sharp = self.sharpen * np.random.random() * self.max_center        kernel = self.identity + sharp​        X = cv2.filter2D(X, -1, kernel)        return X, Y

模糊

可以用最流行的滤镜来随机模糊我们的图像。 有很多方法可以模糊我们的图像。 最著名的是平均值,中值,高斯或双边滤波器。

平均模糊

24511b67d5433f2572c1ae42e3176c7b.gif

内核大小从1到35​

关于平均滤波器。 顾名思义,它使我们可以对给定中心的值取平均值。 这是由内核完成的。 可以指定其大小以增加或减少模糊。 要使用平均滤波器增广图像,我们只需要使用随机大小的内核对输入图像进行滤波。

class GaussianBlur(object):    def __init__(self, max_kernel=(7, 7)):        self.max_kernel = ((max_kernel + 1) // 2)​    def __call__(self, X, Y):        kernel_size = (            np.random.randint(1, self.max_kernel[0]) * 2 + 1,            np.random.randint(1, self.max_kernel[1]) * 2 + 1,        )        X = cv2.GaussianBlur(X, kernel_size, 0)        return X, Y

高斯模糊

e2b10286b4488402f5f259c48d604ca4.gif

内核大小从1到35​

高斯模糊不使用平均滤波器,而是使用高斯滤波器,因此这些值对应于从中心开始的高斯曲线。 请注意,内核维数只能包含奇数。

class GaussianBlur(object):    def __init__(self, max_kernel=(7, 7)):        self.max_kernel = max_kernel​    def __call__(self, X, Y):        kernel_size = (            np.random.randint(1, self.max_kernel[0] + 1),            np.random.randint(1, self.max_kernel[1] + 1),        )        X = cv2.GaussianBlur(X, kernel_size, 0)        return X, Y

透视变换

迄今为止,最广泛使用的图像增广技术是透视变换。 有旋转平移剪切缩放。 这些转换可以在3D维度中执行。 通常,它们仅在2D中使用。 让我们利用我们拥有的一切。

翻转

a846cccd552847f342d2802224d54f64.gif

平移

5a23b8461cdfae0793e1076824e4ec02.gif

剪切

5129be3918cdc50a91c2afa2a9a6fb67.gif

缩放

79a27934bdb6d9eb5bcab729384e606c.gif

结合

我不会在2D图像的3D转换上花费更多的时间,因为我写了有关这方面的整篇文章。 因此,我选择了本文结尾处提供的函数。

应该注意的是,该函数允许我们根据所提出的4个矩阵随机执行变换。 顺序很重要。 这里我们有剪切,然后是旋转,然后是比例缩放,最后是平移。 注意,平移是通过图像尺寸的比例完成的。

​结合随机旋转平移剪切和比例缩放​

3dd8264d956a4a128eccf568fc5d7fb4.gif
class Perspective(object):    def __init__(self,                 max_ratio_translation=(0.2, 0.2, 0),                 max_rotation=(10, 10, 360),                 max_scale=(0.1, 0.1, 0.2),                 max_shearing=(15, 15, 5)):​        self.max_ratio_translation = np.array(max_ratio_translation)        self.max_rotation = np.array(max_rotation)        self.max_scale = np.array(max_scale)        self.max_shearing = np.array(max_shearing)​    def __call__(self, X, Y):​        # get the height and the width of the image        h, w = X.shape[:2]        max_translation = self.max_ratio_translation * np.array([w, h, 1])        # get the values on each axis        t_x, t_y, t_z = np.random.uniform(-1, 1, 3) * max_translation        r_x, r_y, r_z = np.random.uniform(-1, 1, 3) * self.max_rotation        sc_x, sc_y, sc_z = np.random.uniform(-1, 1, 3) * self.max_scale + 1        sh_x, sh_y, sh_z = np.random.uniform(-1, 1, 3) * self.max_shearing​        # convert degree angles to rad        theta_rx = np.deg2rad(r_x)        theta_ry = np.deg2rad(r_y)        theta_rz = np.deg2rad(r_z)        theta_shx = np.deg2rad(sh_x)        theta_shy = np.deg2rad(sh_y)        theta_shz = np.deg2rad(sh_z)​​        # compute its diagonal        diag = (h ** 2 + w ** 2) ** 0.5        # compute the focal length        f = diag        if np.sin(theta_rz) != 0:            f /= 2 * np.sin(theta_rz)​        # set the image from cartesian to projective dimension        H_M = np.array([[1, 0, -w / 2],                        [0, 1, -h / 2],                        [0, 0,      1],                        [0, 0,      1]])        # set the image projective to carrtesian dimension        Hp_M = np.array([[f, 0, w / 2, 0],                         [0, f, h / 2, 0],                         [0, 0,     1, 0]])​        # adjust the translation on z        t_z = (f - t_z) / sc_z ** 2        # translation matrix to translate the image        T_M = np.array([[1, 0, 0, t_x],                        [0, 1, 0, t_y],                        [0, 0, 1, t_z],                        [0, 0, 0,  1]])​        # calculate cos and sin of angles        sin_rx, cos_rx = np.sin(theta_rx), np.cos(theta_rx)        sin_ry, cos_ry = np.sin(theta_ry), np.cos(theta_ry)        sin_rz, cos_rz = np.sin(theta_rz), np.cos(theta_rz)        # get the rotation matrix on x axis        R_Mx = np.array([[1,      0,       0, 0],                         [0, cos_rx, -sin_rx, 0],                         [0, sin_rx,  cos_rx, 0],                         [0,      0,       0, 1]])        # get the rotation matrix on y axis        R_My = np.array([[cos_ry, 0, -sin_ry, 0],                         [     0, 1,       0, 0],                         [sin_ry, 0,  cos_ry, 0],                         [     0, 0,       0, 1]])        # get the rotation matrix on z axis        R_Mz = np.array([[cos_rz, -sin_rz, 0, 0],                         [sin_rz,  cos_rz, 0, 0],                         [     0,       0, 1, 0],                         [     0,       0, 0, 1]])        # compute the full rotation matrix        R_M = np.dot(np.dot(R_Mx, R_My), R_Mz)​        # get the scaling matrix        Sc_M = np.array([[sc_x,     0,    0, 0],                         [   0,  sc_y,    0, 0],                         [   0,     0, sc_z, 0],                         [   0,     0,    0, 1]])​        # get the tan of angles        tan_shx = np.tan(theta_shx)        tan_shy = np.tan(theta_shy)        tan_shz = np.tan(theta_shz)        # get the shearing matrix on x axis        Sh_Mx = np.array([[      1, 0, 0, 0],                          [tan_shy, 1, 0, 0],                          [tan_shz, 0, 1, 0],                          [      0, 0, 0, 1]])        # get the shearing matrix on y axis        Sh_My = np.array([[1, tan_shx, 0, 0],                          [0,       1, 0, 0],                          [0, tan_shz, 1, 0],                          [0,       0, 0, 1]])        # get the shearing matrix on z axis        Sh_Mz = np.array([[1, 0, tan_shx, 0],                          [0, 1, tan_shy, 0],                          [0, 0,       1, 0],                          [0, 0,       0, 1]])        # compute the full shearing matrix        Sh_M = np.dot(np.dot(Sh_Mx, Sh_My), Sh_Mz)​        Identity = np.array([[1, 0, 0, 0],                             [0, 1, 0, 0],                             [0, 0, 1, 0],                             [0, 0, 0, 1]])​        # compute the full transform matrix        M = Identity        M = np.dot(Sh_M, M)        M = np.dot(R_M,  M)        M = np.dot(Sc_M, M)        M = np.dot(T_M,  M)        M = np.dot(Hp_M, np.dot(M, H_M))        # apply the transformation        X = cv2.warpPerspective(X, M, (w, h))        Y = cv2.warpPerspective(Y, M, (w, h))        return X, Y

剪下

1ff33891654cab114e83e8f0249cf0bc.gif

在整个输入上用0替换进行抠图并同时裁剪目标​

抠图非常直观。 它涉及随机删除输入图像的区域。 它的工作方式与我们之前提到的裁剪相同。 但是,我们不删除相关区域。 因此,我们可以再次允许用户提供每个比例的要删除区域的最小和最大大小最大区域数,以同时或不同时从目标剪切区域,我们可以剪切每个通道,还选择已删除区域的默认替换值。

670fb4e957176571dd9b5c4341927c36.gif

​输入剪切通道替换为1,不裁剪目标​

class Cutout(object):    def __init__(self,                 min_size_ratio,                 max_size_ratio,                 channel_wise=False,                 crop_target=True,                 max_crop=10,                 replacement=0):        self.min_size_ratio = np.array(list(min_size_ratio))        self.max_size_ratio = np.array(list(max_size_ratio))        self.channel_wise = channel_wise        self.crop_target = crop_target        self.max_crop = max_crop        self.replacement = replacement​    def __call__(self, X, Y):        size = np.array(X.shape[:2])        mini = self.min_size_ratio * size        maxi = self.max_size_ratio * size        for _ in range(self.max_crop):            # random size            h = np.random.randint(mini[0], maxi[0])            w = np.random.randint(mini[1], maxi[1])            # random place            shift_h = np.random.randint(0, size[0] - h)            shift_w = np.random.randint(0, size[1] - w)            if self.channel_wise:                c = np.random.randint(0, X.shape[-1])                X[shift_h:shift_h+h, shift_w:shift_w+w, c] = self.replacement                if self.crop_target:                    Y[shift_h:shift_h+h, shift_w:shift_w+w] = self.replacement            else:                X[shift_h:shift_h+h, shift_w:shift_w+w] = self.replacement                if self.crop_target:                    Y[shift_h:shift_h+h, shift_w:shift_w+w] = self.replacement        return X, Y

色彩空间

现在,我们进入最有趣的部分。 也是很少考虑的部分。 如果我们知道色彩空间,则可以利用它们的属性来增广图像。 举一个简单的例子,借助HSV颜色空间,我们可以很容易地提取树叶的颜色,并根据我们的意愿随机更改其颜色。 那是一件很酷的事情! 并且我们可以了解自己的图像增广功能的原理。 当然,这需要更多的创造力。 因此,重要的是要了解我们的色彩空间,以充分利用它们。 特别是因为它们对于我们(深度)机器学习模型的预处理至关重要。

7cc2691d390e14e1c37a9f5d85daf579.gif
class Leaf(object):    def __init__(self):        pass    def __call__(self, X, Y):        blur = cv2.GaussianBlur(X, (7, 7), 0)        hsv_blur = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)        # lower mask (0-10)        lower_red = np.array([0,130,130])        upper_red = np.array([20,255,255])        mask_0 = cv2.inRange(hsv_blur, lower_red, upper_red)​        # upper mask (170-180)        lower_red = np.array([165,130,130])        upper_red = np.array([185,255,255])        mask_1 = cv2.inRange(hsv_blur, lower_red, upper_red)        hsv_blur[np.where(mask_1)] = hsv_blur[np.where(mask_1)] - np.array([165, 0, 0])​        mask = mask_0 + mask_1        # change color        turn_color = np.random.randint(0, 255)        hsv_blur[np.where(mask)] = hsv_blur[np.where(mask)] + np.array([turn_color, 0, 0])        X_blur = cv2.cvtColor(hsv_blur, cv2.COLOR_HSV2BGR)        X[np.where(mask)] = X_blur[np.where(mask)]        return X, Y

亮度

d2d9e5f75a0a401b340953817ae0e4bc.gif

亮度从-100到100​

图像增广的一个伟大经典就是能够改变亮度。 有几种方法可以做到这一点,最简单的就是简单地添加一个随机偏差

class Brightness(object):    def __init__(self, range_brightness=(-50, 50)):        self.range_brightness = range_brightness​    def __call__(self, X, Y):        brightness = np.random.randint(*self.range_brightness)        X = X + brightness        return X, Y

对比度

4fe1f6f1c9b37e6b5f66e827ea8733c1.gif

对比度从-100到100​

同样,使用对比非常简单。 这也可以通过随机数完成。

class Contrast(object):    def __init__(self, range_contrast=(-50, 50)):        self.range_contrast = range_contrast​    def __call__(self, X, Y):        contrast = np.random.randint(*self.range_contrast)        X = X * (contrast / 127 + 1) - contrast        return X, Y

噪声注入

最后一种相当常见的图像增广技术是噪声注入。 实际上,我们只添加与输入大小相同的矩阵。 该矩阵由遵循随机分布的元素组成。 可以从任何随机分布中进行噪声注入。 实际上,我们只看到其中两个。 但是随时可以进一步

一般方法

fc9cae482778d3b63fc4d68882350fa2.gif
class UniformNoise(object):    def __init__(self, low=-50, high=50):        self.low = low        self.high = high    def __call__(self, X, Y):        noise = np.random.uniform(self.low, self.high, X.shape)        X = X + noise        return X, Y

高斯方法

6c73eb71f3d7e8c2598d0ac215f0d963.gif
class GaussianNoise(object):    def __init__(self, center=0, std=50):        self.center = center        self.std = std    def __call__(self, X, Y):        noise = np.random.normal(self.center, self.std, X.shape)        X = X + noise        return X, Y

渐晕

e3ec8eb6bd5a9e68d871b56041ecbb81.gif

最后,更少使用但并非没有用的一种方法。 有些相机会产生渐晕效果。 考虑如何通过随机模仿这种现象来增广图像也很有趣。 我们还将尝试为用户提供灵活性。 我们将能够确定距离效果和可以随机开始的最小距离,确定其强度,甚至可以确定效果是朝着黑色还是向白色方向发展。

class Vignetting(object):    def __init__(self,                 ratio_min_dist=0.2,                 range_vignette=(0.2, 0.8),                 random_sign=False):        self.ratio_min_dist = ratio_min_dist        self.range_vignette = np.array(range_vignette)        self.random_sign = random_sign    def __call__(self, X, Y):        h, w = X.shape[:2]        min_dist = np.array([h, w]) / 2 * np.random.random() * self.ratio_min_dist        # create matrix of distance from the center on the two axis        x, y = np.meshgrid(np.linspace(-w/2, w/2, w), np.linspace(-h/2, h/2, h))        x, y = np.abs(x), np.abs(y)        # create the vignette mask on the two axis        x = (x - min_dist[0]) / (np.max(x) - min_dist[0])        x = np.clip(x, 0, 1)        y = (y - min_dist[1]) / (np.max(y) - min_dist[1])        y = np.clip(y, 0, 1)        # then get a random intensity of the vignette        vignette = (x + y) / 2 * np.random.uniform(*self.range_vignette)        vignette = np.tile(vignette[..., None], [1, 1, 3])        sign = 2 * (np.random.random() < 0.5) * (self.random_sign) - 1        X = X * (1 + sign * vignette)        return X, Y

镜头变形

最后,这是一种非常好的方法。 我很惊讶它不经常被使用。 但是它可以模仿相机镜头的失真。 就像透过圆形玻璃看。 在我们看来,由于透镜(玻璃)是圆形的,因此失真了。 因此,如果我们的图像是从带镜头的相机拍摄的,为什么不模拟它们。 默认情况下,应将其用于图像。 至少我是这样认为的。

42581673e067e9cbf561aaa10f9c5f06.gif

因此,我建议在最后一个函数中,通过播放径向系数k1,k2,k3和切向系数p1,p2,可以随机模拟我们的镜头失真。 在该方法中,系数的顺序如下:k1,k2,p1,p2,k3。 我邀请您阅读有关此主题的OpenCV文档。

class LensDistortion(object):    def __init__(self, d_coef=(0.15, 0.15, 0.1, 0.1, 0.05)):        self.d_coef = np.array(d_coef)    def __call__(self, X, Y):        # get the height and the width of the image        h, w = X.shape[:2]        # compute its diagonal        f = (h ** 2 + w ** 2) ** 0.5        # set the image projective to carrtesian dimension        K = np.array([[f, 0, w / 2],                      [0, f, h / 2],                      [0, 0,     1]])        d_coef = self.d_coef * np.random.random(5) # value        d_coef = d_coef * (2 * (np.random.random(5) < 0.5) - 1) # sign        # Generate new camera matrix from parameters        M, _ = cv2.getOptimalNewCameraMatrix(K, d_coef, (w, h), 0)        # Generate look-up tables for remapping the camera image        remap = cv2.initUndistortRectifyMap(K, d_coef, None, M, (w, h), 5)        # Remap the original image to a new image        X = cv2.remap(X, *remap, cv2.INTER_LINEAR)        Y = cv2.remap(Y, *remap, cv2.INTER_LINEAR)        return X, Y

希望对您有用! 请随时关注我或就您喜欢或不喜欢的内容给我反馈。 ✏️ 待会儿见!

资料来源和参考

一切都是自制的,可以免费使用(包括图像和GIF)

特别感谢Elise授权使用此图片

作者:Axel Thevenot

翻译:孟翔杰

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图像数据增强是一提高模型对图像的鲁棒性的方法,特别是在图像识别问题中,如果模型仅在训练集上见到的数据分布情况下表现良好,那么它在测试集上的表现很可能不佳。为了解决这个问题,可以对图像进行数据增强,这样可以增加模型对图像变换的鲁棒性。 在任意旋转字符识别中,你可以使用以下 python 代码实现图像数据增强: ```python import cv2 import numpy as np def random_rotate(image): angle = np.random.uniform(-30, 30) rows, cols = image.shape[:2] rotation_matrix = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1) return cv2.warpAffine(image, rotation_matrix, (cols, rows)) # 旋转一个图像 image = cv2.imread("example.png") rotated_image = random_rotate(image) cv2.imwrite("rotated_image.png", rotated_image) ``` 在代码中,我们使用 `cv2.getRotationMatrix2D` 函数生成旋转矩阵,并使用 `cv2.warpAffine` 函数对图像进行旋转。你可以多次调用 `random_rotate` 函数来生成多个不同的旋转版本,进而实现图像数据增强。 ### 回答2: 图像数据的增广是在训练数据中对图像进行变换和扩充,以提高模型的泛化能力和鲁棒性。对于任意旋转字符识别来说,可以通过增加旋转角度的方式来增广图像数据。下面是一个使用Python代码实现图像数据增广的示例: ```python import cv2 import random import numpy as np def augment_data(image, angle_range): # 随机生成旋转角度 angle = random.uniform(-angle_range, angle_range) # 获取图像的尺寸 h, w = image.shape[:2] # 计算旋转中心 center = (w // 2, h // 2) # 定义旋转矩阵 M = cv2.getRotationMatrix2D(center, angle, 1.0) # 执行旋转变换 rotated_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_LINEAR) return rotated_image # 读取图像数据 image = cv2.imread('image.jpg') # 执行图像数据增广 augmented_image = augment_data(image, 20) # 旋转角度范围为±20度 # 显示增广后的图像 cv2.imshow('Augmented Image', augmented_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上代码中,`augment_data()`函数用于对输入图像进行旋转增广。通过随机生成旋转角度,然后计算旋转中心和旋转矩阵,并利用`cv2.warpAffine()`函数实现图像的旋转变换。最后,可以通过`cv2.imshow()`函数显示增广后的图像。 在实际应用中,可以将图像数据增广应用于训练集中的每个图像,以提高模型的鲁棒性和泛化能力。 ### 回答3: 图像数据的增广是指对原始图像进行一系列变换操作,以增加数据样本的多样性和数量,从而提高模型的泛化能力和鲁棒性。对于任意旋转字符识别任务,可以使用Python代码实现以下图像数据增广操作: 1. 导入所需的库和模块: ```python import cv2 import numpy as np import random ``` 2. 加载原始图像数据: ```python image = cv2.imread('image_path.jpg') ``` 3. 定义旋转操作的参数和范围: ```python angle_range = (-15, 15) # 旋转角度范围 ``` 4. 定义旋转函数并实现图像数据增广: ```python def rotate_image(image, angle): # 获取图像宽高 height, width = image.shape[:2] # 计算旋转中心 center = (width / 2, height / 2) # 定义旋转矩阵 rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0) # 执行旋转操作 rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height)) return rotated_image # 随机生成旋转角度 angle = random.uniform(angle_range[0], angle_range[1]) # 执行图像旋转操作 rotated_image = rotate_image(image, angle) ``` 5. 可根据需求,添加其他图像数据增广操作,如平移、缩放、翻转等,以增加数据样本的多样性。 通过以上代码段,可以实现对任意旋转字符的图像数据进行增广。该方法可以在训练过程中生成多样性的图像样本,增加数据集的规模并提高模型的泛化能力和鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值