自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 OpenCV计算机视觉实战(10)——形态学操作详解

在本节中,我们介绍了腐蚀与膨胀:理解了结构元素的形状与尺寸如何影响图像噪声去除与连通性增强;开运算与闭运算:掌握了“先破后立”与“先立后破”的组合套路,轻松去除斑点与填补空洞;形态学梯度与骨架提取:学会了如何从二值图中提取清晰的边缘轮廓,并将复杂形状瘦身为一像素宽的中轴线。在实际项目中,我们可以根据噪声类型和应用需求,自由组合这些操作:先用开运算去噪,再用闭运算恢复结构,或在边缘检测和形状分析前加入梯度与骨架处理。

2025-06-04 09:19:27 994 1

原创 OpenCV计算机视觉实战(9)——阈值化技术详解

在图像处理领域,阈值化 (Binarization) 技术就像一把魔术剪刀,能够将复杂的灰度图像一分为二,提取出关键的前景信息。无论是光照均匀的实验室拍摄,还是手机拍摄的阴影斑驳文档,选择合适的阈值化方法都至关重要。本文将介绍 OpenCV 中的三大阈值化法——全局阈值、自适应阈值与 Otsu 算法,剖析它们的原理与优缺点,并通过一个真实的文档扫描案例演示如何在实际场景下灵活组合与应用。

2025-05-29 08:32:39 1309

原创 OpenCV计算机视觉实战(8)——图像滤波详解

在本节中,我们从线性滤波(均值/高斯)的原理与参数调优入手,紧接着以非线性滤波(中值/双边)为重点,探讨了它们在各自噪声模型下的卓越表现与局限,最后,通过自定义卷积核实践,介绍如何使用 cv2.filter2D 实现锐化、边缘检测等多样效果。

2025-05-26 08:26:20 1683 1

原创 OpenCV计算机视觉实战(7)——色彩空间详解

本文深入探讨了三种常见色彩空间:RGB/BGR、HSV 与 CIELAB,并介绍了 OpenCV 中色彩空间转换的方法与原理 。在 HSV 与 Lab 空间部分,演示了如何利用 HSV 进行色彩分割,以及使用 Lab 空间进行颜色校正与色差分析。最后,展示了如何使用 cv2.calcHist 计算颜色直方图,并结合 Matplotlib 对 BGR 通道直方图进行可视化分析,以支持图像增强和基于颜色的检索任务 。

2025-05-22 08:28:02 1521 1

原创 OpenCV计算机视觉实战(6)——经典计算机视觉算法

计算机视觉是一个多学科交叉领域,目标是使机器能够理解和解释来自图像和视频的视觉信息。本节将介绍经典计算机视觉算法的关键原理、应用、优势和局限性,即使是在深度学习技术的出现之后,这些算法仍然具有重要意义,为图像分析、特征提取、分割、运动估计和目标检测奠定了基础。并在特定领域内对不同算法进行比较分析,展示经典算法在实际场景中的应用。

2025-05-19 08:19:41 2336 2

原创 OpenCV计算机视觉实战(5)——图像基础操作全解析

在本文中,我们首先从最底层的像素与 ROI 操作入手,理解了如何高效访问与修改图像数据;继而通过通道分离与合并,掌握了色彩处理与对比度增强的技巧;最后借助仿射与透视变换,实现了从基础平移、旋转到复杂校正的完整流程。

2025-05-15 11:13:28 1001 1

原创 OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析

在本节中,介绍了计算机视觉中的常见任务。从讨论计算机视觉中的常见挑战开始,介绍了图像分类、检测和定位图像中对象、使用分割技术获取图像中的细粒度信息,最后讨论了光学字符识别。

2025-05-09 08:40:50 903 2

原创 OpenCV计算机视觉实战(3)——计算机图像处理基础

本文全面介绍了计算机视觉和数字图像处理的基础知识。从最基本的像素概念入手,详细讲解了图像在计算机中的表示方式,包括RGB、CMYK等色彩空间的工作原理及其应用场景。还系统分析了常见图像和视频文件格式的特点,梳理了计算机图像处理技术的发展历程,并重点介绍了OpenCV这一强大的开源计算机视觉库的功能与应用领域。

2025-05-07 09:03:31 1193 2

原创 OpenCV计算机视觉实战(2)——环境搭建与OpenCV简介

OpenCV (Open Source Computer Vision Library) 是一个开源计算机视觉库,广泛应用于图像处理、机器视觉、人工智能等领域。本文将手把手教你从环境搭建到运行第一个 OpenCV 程序,包含图像的读取、显示、保存,以及使用摄像头实时捕获图像的基础操作。

2025-04-28 08:32:12 1236 1

原创 OpenCV计算机视觉实战(1)——计算机视觉简介

本节从计算机成像的历史开始,介绍图像表示、处理和操作,还介绍了数字图像处理,并简要解释了数字图像处理与模拟图像处理之间的区别。

2025-04-24 09:46:22 668

原创 Python图像处理【24】面部变形(face morphing)

面部图像处理是提取和分析人类面部信息的研究领域,人脸是图像处理中的最重要的对象之一。因此,在过去的几十年中,面部图像的自动处理和识别已经得到了研究人员的极大关注。在本节中,我们学习了如何使用 dlib 库执行面部变形操作。

2024-04-22 08:25:12 1376 10

原创 Python图像处理【23】分布式图像处理

分布式处理可以将位于不同地点的、或具有不同功能的、或拥有不同数据的多台计算机通过通信网络连接起来,在控制系统的统一管理控制下,协调地完成大规模信息处理任务,利用分布式处理可以提高信息处理速度。在本节中,我们学习了如何使用 Dask 完成分布式图像处理,从而提高图像处理速度。

2024-03-18 08:29:30 1226 11

原创 Python图像处理【22】基于卷积神经网络的图像去雾

图像去雾已成为计算机视觉的重要研究方向,在雾、霾等恶劣天气下拍摄的的图像通常由于大气散射的作用,图像质量严重下降使颜色偏灰白色,对比度降低,物体特征难以辨认,还会影响图像的分析与处理。因此,需要使用图像去雾技术来增强或修复图像,以改善视觉效果并便于图像的后续处理。在本节中,我们学习了一种基于卷积神经网络的图像去雾模型,通过使用训练后的模型可以显著改善图像视觉效果。

2024-03-11 08:33:07 1952 39

原创 Python图像处理【21】基于卷积神经网络增强微光图像

在本节中,我们将学习如何基于预训练的深度学习模型执行微光/夜间图像增强。由于难以同时处理包括亮度、对比度、伪影和噪声在内的所有因素,因此微光图像增强一直是一项具有挑战性的问题。为了解决这一问题,提出了多分支微光增强网络 (multi-branch low-light enhancement network, MBLLEN),其关键思想是提取不同尺度的丰富特征,以便可以通过多个子网应用图像增强。最后,通过多分支融合生成输出图像,采用这种方式图像质量得到了极大的提高。

2024-03-05 08:09:52 1234 24

原创 Python图像处理【20】图像金字塔

图像金字塔是一种表达多尺度图像一种技术,是一种以多分辨率来解释图像的有效且简单的结构,通常而言,一幅图像的图像金字塔是一系列以金字塔形状(自下而上)分辨率逐步降低的图像集合(来源于同一张原始图的图像不同分辨率)。本节中,介绍了图像金字塔的基本概念,包括高斯金字塔和拉普拉斯金字塔,并利用图像金字塔实现了图像混合应用。

2024-02-28 08:00:10 1199 11

原创 [Python图像处理] 使用OpenCV创建色调图

色调映射将图像的强度改变到高水平或高动态范围,降低 HDR 图像的整体对比度以便于在具有较低动态范围的设备或打印输出上显示,并且可以应用于生成具有保留的局部对比度的图像。在本节中,我们将学习如何使用 OpenCV 函数在 HDR 图像上应用色调映射。

2024-02-05 08:15:16 1119 3

原创 [Python图像处理] 使用OpenCV创建对象显着图

显着图是显示每个像素独特质量的图像,显着图的目的是简化或将图像的表示形式更改为更有意义和易于分析的内容。在本节中,我们将学习如何使用 OpenCV 函数来使用静态显着性检测算法来定位图像的最显着区域。

2024-01-29 08:23:16 1034 5

原创 [Python图像处理] 使用OpenCV创建深度图

深度图是一种表示场景中不同点距离相机的图像。它提供了关于场景中物体的距离信息,可以用于3D重建、虚拟现实、增强现实等应用。在本节中,我们将学习如何使用 OpenCV 函数来计算立体图像的深度图。

2024-01-28 08:01:44 581 2

原创 Python图像处理【19】基于霍夫变换的目标检测

霍夫变换是一种特征提取 (feature extraction) 技术,在图像分析、计算机视觉等领域应用广泛,利用霍夫变换可以辨别并提取图像中的目标特征。本节中,我们学习了霍夫变换的基本原理,进一步将广义霍夫变换将其扩展到检测任意形状对象,并学习了如何利用霍夫变换检测图像中的目标对象。

2024-01-22 07:40:17 1221 11

原创 Python图像处理【18】边缘检测详解

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识图像中亮度变化明显的点,图像属性中的显著变化通常反映了图像中的重要变化和特征。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个重要研究领域。在本节中,我们学习了多种边缘检测算法,包括基于梯度的算法以及基于深度神经网络的方法。

2024-01-17 08:16:15 1377 7

原创 Python图像处理【17】指纹增强和细节提取

指纹是人类手指末端指腹上由凹凸的皮肤所形成的纹路,众所周知,指纹具有“各不相同、终生不变”的特性,因此指纹通常可以用于识别人的身份。但是,由于皮肤和印模条件的变化,指纹图像质量会下降和损坏。因此,需要在细节提取之前采用图像增强技术。本节中,我们学习了如何利用形态学操作增强指纹图像,并提取指纹细节。

2024-01-11 08:08:58 1489 3

原创 Python图像处理【16】OpenCV直方图均衡化

对比度拉伸/直方图均衡化使用单调非线性映射重新分配输入图像中的像素强度值,以使输出图像具有均匀的强度分布(平坦直方图),从而增强图像的对比度。本节中,介绍了直方图均衡化的基本概念,并且实现两种(全局和局部)直方图均衡化算法。

2024-01-05 08:18:09 1398 1

原创 [Python图像处理] 基于曲率驱动算法的图像去噪

在本节中,我们将学习如何使用曲率驱动的滤波器和各向异性扩散滤波器来从带有噪声的图像中删除噪声。

2023-12-29 08:15:51 1118 1

原创 [Python图像处理] 基于图像均值消除随机噪声

在本节中,我们将学习如何从一组带有噪声的输入图像中估算一个无噪声的图像,所有图像都是通过使用原始(无噪声)图像像素添加独立同分布的随机噪声创建的,只需计算噪声图像的平均值/中值。

2023-11-08 07:25:22 254 3

原创 Python图像处理【15】基于非锐化掩码锐化图像

图像平滑与图像锐化是两种效果相反的图像处理技术,图像平滑往往使图像中的边界、轮廓变得模糊,而图像锐化就是为了减少模糊图像中不利于图像分析的效果,使图像的边缘变的清晰。本节中,我们学习了使用多种不同图像处理库(包括 scikit-image、PIL 以及 OpenCV 等)来解决图像锐化问题。

2023-11-01 07:30:00 466 4

原创 Python图像处理【14】基于非线性滤波器的图像去噪

噪声是干扰图像正常分析和处理的一个重要因素,一幅图像在实际应用中可能存在各种各样的噪声,噪声可能在拍摄中产生,也可能在传输过程中产生。在本节中,我们学习了几种常见的非线性滤波器包括 min、max 和 mode 滤波器,并将这些滤波器用于图像降噪,从而提高图像质量,便于后续进行处理与分析,并且对比了不同滤波器在图像去噪方面的不同效果。

2023-10-22 10:26:31 710 57

原创 Python图像处理【13】使用PIL执行图像降噪

在本节中,我们将介绍一些空域滤波器,以及如何使用 Pillow 库函数实现这些滤波器。我们将介绍诸如平均 (mean) 和加权平均 (weighted mean) 之类的线性滤波器,在后续的学习中我们会介绍诸如 max 和 min 滤波器之类的非线性滤波器。通过在图像上滑动应用卷积核窗口,每个输出像素是输入图像中对应输入像素的邻域像素的(线性或非线性)函数。

2023-07-27 07:15:02 907 16

原创 [Python图像处理] 基于离散余弦变换的安全扩频数字水印

数字水印是可见的或不可见的标识码,这种标识码被永久嵌入图像中,并且即使在解码过后后仍存在于图像中。在本节中,我们将采用基于离散余弦变换 (Discrete Cosine Transform, DCT) 的水印技术,将水印构造为一个独立同分布的高斯随机向量,该向量以类似扩频的方式隐秘的插入到数据感知上最重要的频谱分量中。

2023-06-09 07:44:00 572 2

原创 [Python图像处理] 小波变换执行图像融合

图像融合是将多个输入图像组合到单个输出图像中的过程,输出图像中包含比单个输入图像更好的场景描述,本节将介绍如何基于小波变换执行图像融合。

2023-04-26 07:48:01 1658 3

原创 Python图像处理【12】基于小波变换执行图像去噪

离散小波变换是对基本小波的尺度和平移进行离散化的一种谱分析工具,能够同时考察局部时域过程的频域特征以及局部频域过程的时域特征。对于图像来说,离散小波变换能够将图像变换为一系列的小波系数并将这些系数进行高效的压缩和储存,并且可以更好地还原和表现图像。本节中,我们学习了小波变换的基本原理,以及如何利用 pywt 和 scikit-image 库实现小波变换图像去噪。

2023-04-14 12:30:16 5301 3

原创 Python图像处理【11】利用反卷积执行图像去模糊

模糊操作(例如,高斯模糊)是线性的,从数学上讲模糊过程是可逆的,即可以通过模糊图像恢复原始高清图像。但在实践中,该问题的逆过程计算起来非常困难。在本节中,我们学习了如何通过对图像的拉普拉斯方差进行简单的阈值处理来检测图像是否模糊,以及如何使用 SimpleItk 和 scikit-image 库函数的反卷积算法来消除图像中的模糊。

2023-04-04 07:30:00 3047 4

原创 [Python图像处理] 基于离散余弦变换的图像去噪

在本节中,我们将学习如何使用离散余弦变换( Discrete Cosine Transform, DCT) 对带有噪声的 RGB 彩色图像执行去噪操作,得到纯净的原始图像。

2023-03-23 07:56:52 1126

原创 Python图像处理【10】基于离散余弦变换的图像压缩

随着大数据时代的到来,图像数据在质量提高的同时,其大小也变得越来越大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。图像压缩是数据压缩技术在图像上的应用,利用图像压缩可以减少图像数据中的冗余信息,从而能够更加高效存储和传输数据。在本节中,我们首先介绍离散余弦变换 (Discrete Cosine Transform, DCT) 的基本原理,利用 DCT 执行图像压缩操作,并实现图像 JPEG 压缩。

2023-03-20 07:30:00 2348 4

原创 [Python图像处理] 频域相位相关模板匹配

相位相关 (Phase Correlation) 是一种可用于估计两个相似图像之间的相对平移偏移的方法。它通常用于图像匹配,并依赖于图像的频域表示,通常通过快速傅里叶变换计算。本节中,我们使用频域相位解决相关模板匹配。

2023-03-15 07:30:00 695

原创 Python图像处理【9】使用高通滤波器执行边缘检测

高通滤波器 (High Pass Filters, HPF) 是一系列滤波器,这些滤波器仅允许来自图像频率响应(使用 DFT 获取)的高频部分通过,并过滤所有小于截止值的低频部分。使用逆 DFT 重建图像时,由于高频分量对应于边缘/细节等,因此利用 HPF 可以提取或增强图像中的边缘/细节。在本节中,我们将学习如何使用 OpenCV 的 FFT 模块实现 HPF 检测图像中对象边缘,例如 Ideal、Gaussian 和 Butterworth HPF。

2023-03-13 07:30:00 1721 6

原创 [Python图像处理] 使用高通滤波器实现同态滤波

同态滤波是一种去除图像中乘性噪声的技术,常用于校正图像中的不均匀照明。根据光照反射模型模型,图像中像素的强度(即对象上的点反射的光)是场景照明和场景中对象反射的结果。傅立叶变换在加法下是线性关联的,但在乘法下并不关联。因此,傅立叶方法仅在将噪声作为原始图像的附加项建模时,才适合从图像中去除噪声。在本节中,我们将学习如何使用 Butterworth HPF 实现同态滤波器。

2023-03-07 07:30:00 1625 2

原创 [Python图像处理] 使用LPF/Notch滤波器执行图像去噪

在本节中,我们将学习如何使用频域滤波器(例如高斯低通滤波器和 Notch 滤波器)从输入图像中删除噪声。我们将首先使用 Notch 滤波器删除周期性噪声,然后介绍如何使用例如高斯滤波器等低通滤波器 (Low Pass Filter, LPF) 输出图像中的脉冲噪声。

2023-03-05 07:30:00 1072 18

原创 Python图像处理【8】使用低通滤波器模糊图像

低通滤波器 (Low Pass Filter, LPF) 过滤了图像中的高频部分,并仅允许低频部分通过。因此,在图像上应用 LPF 会删除图像中的细节/边缘和噪声/离群值,此过程也称为图像模糊(或平滑),图像平滑可以作为复杂图像处理任务的预处理部分。在本节中,我们将学习如何使用不同类型的滤波器核执行图像卷积以模糊图像。

2023-03-01 07:30:00 3357 35

原创 Python图像处理【7】采样、卷积与离散傅里叶变换

采样 (Sampling) 是用于选择/丢弃图像像素的空间操作,通常用于增加/减小图像大小;而卷积是一种局部数学运算,通过将像素及其相邻像素的强度值乘以卷积核实现;使用不同核执行图像卷积会在输出图像中产生不同的效果。离散傅里叶变换 (Discrete Fourier Transform, DFT) 的基本思想是将图像视为二维函数,该函数可以表示为二维正弦和余弦(傅里叶基/系数)的加权和。在本节中,我们介绍了频域图像处理概念以及相关问题,包括采样、卷积和离散傅里叶变换。

2022-12-27 07:30:00 1725 10

原创 Python图像处理【6】通过哈希查找重复和类似的图像

哈希函数 (Hash Function) 可以将任意长度的数据字符串映射到固定长度的输出,通常用于压缩输入数据。在本节中,我们介绍图像搜索中的两个相关问题,即使用基于哈希函数的方法来解决问题图像搜索问题,包括查找重复图像和查找类似图像,我们分别使用了 MD5 算法和感知哈希函数解决这两个问题。

2022-12-25 07:30:00 3111 8

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除