全文共1477个字,估计学习时间为3分钟
图1: 最好的Python库(根据GitHub Star值和Contributor值绘制,图标大小与提交值成比例)
以下是2018年排名前15位的Python库(截至2018年12月16日的数据):
1.TensorFlow(贡献者– 1757,提交– 25756,星级– 116765)
TensorFlow是一个开源软件库,它使用数据流图来执行数值计算. 图形节点表示数学运算,图形的边缘表示在节点之间流动的多维数据阵列(张量). 这种灵活的架构使用户无需重写代码即可在台式机,服务器或移动设备中的一个或多个CPU / GPU上执行计算.
2.pandas(贡献者– 1360,提交– 18441,星– 17388)
Pandas是一个Python软件包,可提供快速,灵活和富于表现力的数据结构,从而使“关系”数据或“标记”数据的使用变得简单而直观. Pandas旨在成为使用Python进行真实数据和真实数据分析的基本高级构建块.
3.scikit-learn(贡献者– 1218
Scikit-learn是基于NumPy,SciPy和matplotlib的机器学习Python模块,可以为数据挖掘和数据分析提供简单有效的工具. SKLearn适合每个人,并且可以在许多情况下重复使用.
4.PyTorch(贡献者– 861,承诺– 15362,星级– 22763)
PyTorch是一个Python软件包,具有以下两个高级功能:
·使用强大的GPU加速来实现张量计算(类似于NumPy)
·深度神经网络(基于基于磁带的autograd系统)
您还可以在需要时重用自己喜欢的Python软件包(例如NumPy,SciPy和Cython)来扩展PyTorch.
5.Matplotlib(贡献者– 778,承诺– 28094,星级– 8362)
Matplotlib是一个Python 2D绘图库,可以在跨平台交互环境中以各种硬拷贝格式生成高质量的图形. Matplotlib可用于Python脚本python库,Python和IPython Shell(例如MATLAB或Mathematica),Web应用程序服务器以及各种图形用户界面工具包.
6. Keras(贡献者– 856,贡献– 4936,星– 36450)
Keras是用Python编写的高级神经网络API,可以与TensorFlow,CNTK或Theano作为后端一起运行. Keras的发展重点是实现快速试验. 做好研究的关键是尽快将想法转化为结果.
7.NumPy(贡献者– 714,承诺– 19399,星级– 9010)
NumPy是Python中科学计算所需的基本软件包. 它提供了强大的N维数组对象,复杂的(广播)功能,用于集成C / C ++和Fortran代码的工具,以及实用的线性代数和傅立叶变换以及随机数生成功能.
8.SciPy(贡献者– 676,承诺– 20180,星级– 5188)
SciPy(发音为“ Sigh Pie”)是面向数学,科学和工程方向的开源软件,包括许多模块: 统计,优化,积分,线性代数,傅立叶变换,信号和图像处理,ODE求解器Wait
9.Apache MXNet(贡献者– 53,提交– 9060,星级– 15812)
Apache MXNet(孵化)是一个旨在提高效率和灵活性的深度学习框架,可以混合符号和命令式编程来最大化效率和生产力. MXNet的核心是动态依赖的调度程序,可以自动并行执行符号和命令操作.
10.Theano(贡献者– 333,承诺– 28060,星级– 8614)
Theano这个Python库允许用户有效地定义,优化和评估涉及多维数组的数学表达式,并可以使用GPU来实现有效的符号区分.
11.Bokeh(贡献者334,委员会17395,星星8649)
Bokeh是一个交互式可视化Python库,可以在现代Web浏览器中实现美观而有意义的数据可视化呈现. 使用Bokeh,您可以轻松快速地创建交互式图表,仪表板和数据应用程序.
12.XGBoost(贡献者– 335,提交– 3557,星级– 14389)
XGBoost是优化的分布式梯度提升库(gradient boosting library),旨在提高效率,灵活性和便携性. XGBoost在梯度提升框架下运行机器学习算法,为用户提供了梯度提升决策树(也称为GBDT,GBM),可以快速而准确地解决许多数据科学问题. 相同的代码可以在主要的分布式环境(Hadoop,SGE和MPI)中运行,并且可以解决数十亿案例以外的其他问题.
13. Gensim(Contributors-301,Commits-3687,Stars-8295)
Gensim是用于主题建模,文档索引和语料库相似性检索的Python库. 它的目标受众是自然语言处理(NLP)和信息检索(IR)领域的小组.
14.Scrapy(贡献者– 297,提交– 6808,星– 30507)
Scrapy是一种快速高级的Web爬网和爬网框架,用于爬网网站并从其页面中提取结构化数据. Scrapy被广泛用于数据挖掘,监视和自动化测试.
15.Caffe(贡献者– 270,承诺– 4152,星级– 26531)
Caffe是一个基于表达,速度和模块化的深度学习框架,由伯克利人工智能研究(BAIR)/伯克利视觉与学习中心(BVLC)和社区贡献者开发.
本文来自电脑杂谈,转载请注明本文网址:
http://www.pc-fly.com/a/jisuanjixue/article-207865-1.html