(2020•黑龙江-26)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.
(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;
(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.

试题动画制作讲解链接:观看试题图形制作视频请戳我
试题分析讲解链接:观看试题分析视频请戳我
【分析】
(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;
(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.


【解析】
(1)证明:∵∠BAC=90°,AB=AC,
∴∠ACB=45°,
∵AM⊥BC,
∴∠MAC=45°,
∴∠EAN=∠MAC=45°,
同理∠NAG=45°,
∴∠EAN=∠NAG,
∵四边形ABDE和四边形ACFG为正方形,
∴AE=AB=AC=AG,
∴EN=GN.

(2)如图,∠BAC=90°时,

借助一线三等角的基本模型构造全等
(1)中结论成立.
理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,
∵四边形ABDE是正方形,
∴AB=AE,∠BAE=90°,
∴∠EAP+∠BAM=180°﹣90°=90°,
∵AM⊥BC,
∴∠ABM+∠BAM=90°,
∴∠ABM=∠EAP,
∴△ABM≌△EAP(AAS),
∴EP=AM,
同理可得:GQ=AM,
∴EP=GQ,
∴△EPN≌△GQN(AAS),
∴EN=NG.
证法二:

借助角的同余关系证明EN=AN=NG
如图,∠BAC=90°时,也可以借助,△ABC≌△AEG(SAS)可得∠3=∠5,以及,
∵∠1+∠2=90°,∠1+∠3=90°
∴∠3=∠2,又∠4=∠2
∴∠4=∠5
……
易证:EN=NG
如图,∠BAC≠90°时,

(1)中结论成立.
理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,
∵四边形ABDE是正方形,
∴AB=AE,∠BAE=90°,
∴∠EAP+∠BAM=180°﹣90°=90°,
∵AM⊥BC,
∴∠ABM+∠BAM=90°,
∴∠ABM=∠EAP,
∴△ABM≌△EAP(AAS),
∴EP=AM,
同理可得:GQ=AM,
∴EP=GQ,
∴△EPN≌△GQN(AAS),
∴EN=NG.
喜欢我的分析的亲们,记得关注我的头条号:龙老师数学工作室,一定多多分享;
西瓜视频里搜索:龙老师数学工作室,有更多视频,分析各省市中考压轴题,动图制作技巧的讲解,以及制图软件——几何表达式使用教程合集……