四个角不是直角的四边形_一线三等角构造全等——解析2020黑龙江中考数学26题(压轴题)...

(2020•黑龙江-26)以Rt△ABC的两边ABAC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点AAMBCM,延长MAEG于点N

(1)如图①,若∠BAC=90°,ABAC,易证:ENGN

(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.

a0b000564353f0c5ffb9d1dfe80fc8e3.png

试题动画制作讲解链接:观看试题图形制作视频请戳我

试题分析讲解链接:观看试题分析视频请戳我

【分析】

(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;

(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EPAM,同理可证GQAM,从而得到EPGQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得ENNG

c7fe5667a46812eaeaf42fa9aae12c86.png
b2de2018738c6d8b9fbd4a27510edc97.png

【解析】

(1)证明:∵∠BAC=90°,ABAC

∴∠ACB=45°,

AMBC

∴∠MAC=45°,

∴∠EAN=∠MAC=45°,

同理∠NAG=45°,

∴∠EAN=∠NAG

∵四边形ABDE和四边形ACFG为正方形,

AEABACAG

ENGN

b3189bb65b299c596ef3141e21739863.png

(2)如图,∠BAC=90°时,

da5cd12bbd4b12140a5d5aab2a975167.png

借助一线三等角的基本模型构造全等

(1)中结论成立.

理由:过点EEPANAN的延长线于P,过点GGQAMQ

∵四边形ABDE是正方形,

ABAE,∠BAE=90°,

∴∠EAP+∠BAM=180°﹣90°=90°,

AMBC

∴∠ABM+∠BAM=90°,

∴∠ABM=∠EAP

∴△ABM≌△EAP(AAS),

EPAM

同理可得:GQAM

EPGQ

∴△EPN≌△GQN(AAS),

ENNG

证法二:

8a18ac5bc87d2fed8372fa733123d4ae.png

借助角的同余关系证明EN=AN=NG

如图,∠BAC=90°时,也可以借助,△ABC≌△AEG(SAS)可得∠3=∠5,以及,

∵∠1+∠2=90°,∠1+∠3=90°

∴∠3=∠2,又∠4=∠2

∴∠4=∠5

……

易证:ENNG

如图,∠BAC≠90°时,

975f6daeebbfdef3f8c019437c068924.png

(1)中结论成立.

理由:过点EEPANAN的延长线于P,过点GGQAMQ

∵四边形ABDE是正方形,

ABAE,∠BAE=90°,

∴∠EAP+∠BAM=180°﹣90°=90°,

AMBC

∴∠ABM+∠BAM=90°,

∴∠ABM=∠EAP

∴△ABM≌△EAP(AAS),

EPAM

同理可得:GQAM

EPGQ

∴△EPN≌△GQN(AAS),

ENNG

喜欢我的分析的亲们,记得关注我的头条号:龙老师数学工作室,一定多多分享;

西瓜视频里搜索:龙老师数学工作室,有更多视频,分析各省市中考压轴题,动图制作技巧的讲解,以及制图软件——几何表达式使用教程合集……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值