python 仿真积分模块_形变仿真中的积分方法

形变仿真中,积分方法主要有显式积分方法(Explicit time integration scheme)、隐式时间积分方法(Implicit time integration scheme)等。

下面介绍 中心插值法、Houbolt 方法、Wilson-\(\theta\) 方法、以及 Newmark 方法。(这些方法应该也是包含在显式、隐式方法中的)

0、变量定义

假定 \(t\) 时刻,质点的位置、速度、加速度分别为 \(\boldsymbol{u}_t\) 、\(\dot{\boldsymbol{u}}_t\) 、 \(\ddot{\boldsymbol{u}}_t\) 。仿真过程中,时间间隔为 $$

1、中心插值法

在中心插值法中,是按中心差分将速度和加速度矢量离散化为:

\[\begin{aligned}

\dot{\boldsymbol{u}}_t = \frac{1}{2\Delta t}(\boldsymbol{u}_{t + \Delta t} - \boldsymbol{u}_{t - \Delta t}) \\

\ddot{\boldsymbol{u}}_t = \frac{1}{2\Delta t^2}(\boldsymbol{u}_{t + \Delta t} - 2\boldsymbol{u}_{t} + \boldsymbol{u}_{t - \Delta t})

\end{aligned}

\]

在中心插值法中,将 \(t\) 时刻的速度和加速度用相邻时刻的位移来表示。

2、线性加速度法和 Wilson-\(\theta\) 法

线性加速度法和 Wilson-\(\theta\) 法,都是属于逐步积分法。

(略)

3、Newmark 方法

Newmark 在 1959 年提出的逐步积分格式,称为 Newmark 方法。它的基本假定是

\[\begin{aligned}

\dot{\boldsymbol{u}}_{t + \Delta t} = \dot{\boldsymbol{u}}_{t} + [(1-\delta)\ddot{\boldsymbol{u}}_{t} + \delta \ddot{\boldsymbol{u}}_{t + \Delta t}] \Delta t \\

\boldsymbol{u}_{t + \Delta t} = \boldsymbol{u}_{t} + \dot{\boldsymbol{u}}_{t} \Delta t + [(-\frac{1}{2} - \alpha)\ddot{\boldsymbol{u}}_{t} + \alpha \ddot{\boldsymbol{u}}_{t + \Delta t}] \Delta t^2

\end{aligned}

\]

其中,\(\delta\) 和 \(\alpha\) 是按积分的精度和稳定性要求可以调整的参数。当 \(\delta = \frac{1}{2}\) , \(\alpha = \frac{1}{6}\) 时,它就是线性加速算法。所以,Newmark 方法也可以理解为线性加速法俄一个小延伸。

Newmark 法最初提出作为无条件稳定的一种积分格式是常平均加速度法,即假定从 \(t\) 到 \(t + \Delta t\) 时刻,加速度不变,取为常数 \(\frac{1}{2}(\ddot{\boldsymbol{u}}_{t} + \ddot{\boldsymbol{u}}_{t + \Delta t})\) 。此时,取 \(\delta = \frac{1}{2}\) , \(\alpha = \frac{1}{4}\) 。常平均加速度法是应用的最为广泛的逐步积分方法之一。研究表明,当 \(\delta \ge 0.5\) , \(\alpha \ge 0.25(0.5 + \delta)^2\) 时,Newmark 方法是无条件稳定的。

4、Houbolt 方法

(略)

小结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值