java knn kd树_KNN算法和KD树

本文介绍了KNN算法的基本思想,包括k值选择、距离度量方式和决策规则,并探讨了在大数据量下KNN算法的效率问题,提出了使用最小堆和训练数据排序的方法。此外,文章详细讲解了KD树的构建过程和搜索策略,阐述了KD树如何优化KNN算法的搜索效率。
摘要由CSDN通过智能技术生成

KNN算法和KD树

KNN算法的思路非常简单,对于新的样本,找出距其最近的k个样本,再根据这k个样本的类别,通过多数投票的方式预测新样本的类别。k近邻算法没有学习或训练过程。但k近邻算法仍有很多值得关注的地方,比如超参数k值的选择、距离的度量方式、决策规则以及快速检索k近邻的算法(kd树等)。

1. KNN算法的三要素

KNN算法的流程非常简单,确定一个KNN算法,明确下来三个基本要素即可。即k值的选择、距离的度量方式和决策规则。

1.1 k值的选择

在KNN算法中k值即表示对于一个新的样本,从训练集中选择和新样本距离最近的k个样本,用这k个样本决定新样本的类别。k值作为一个超参数,很慢明确给出一个合适的值,k取的过大或过小都会导致算法误差增大。一般可以采用留取验证集的方式确定k值的大小。即选择使得验证集准确率最高的k值。

1.2 距离度量方式

计算样本之间的距离时,有不同的距离计算方式,常用是欧式距离,也可以采用更一般的LpLp距离。LpLp距离:Lp(xi,xj)=(∑nk∣∣xki−xkj∣∣p)1pLp(xi,xj)=(∑kn|xik−xjk|p)1p

欧式距离是LpLp距离的特殊情况,即p=2p=2时:欧式距离:L2(xi,xj)=∑nk∣∣xki−xkj∣∣2−−−−−−−−−−−√L2(xi,xj)=∑kn|xik−xjk|2

另外,还有曼哈顿距离(也称之为街区距离),也是LpLp距离的特殊情况,即p=1p=1时的情况。曼哈顿距离:L1(xi,xj)=∑nk∣∣xki−xkj∣∣L1(xi,xj)=∑kn|xik−xjk|

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值