bp神经网络python源代码_用Python实现BP神经网络(附代码)

用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。

BP神经网络

全部代码

https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py

神经网络model

先介绍个三层的神经网络,如下图所示

输入层(input layer)有三个units(

53ff000306b57709c84f

为补上的bias,通常设为1)

53fe00035fcb82192d0f

表示第j层的第i个激励,也称为为单元unit

54000002fa118434d777

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

56790000af217e5ef63c

所以可以得到:

隐含层:

56790000af203d10c331

53fc00038d9243a98025

56790000af2273dec4ad

输出层

53ff000306b773c123cf

其中,S型函数

53fe00035fccc6b591f8

,也成为激励函数

可以看出

53fd00038882eef49bf2

为3x4的矩阵,

53fe00035fcd8c4ec884

为1x4的矩阵

54000002fa118434d777

==》j+1的单元数x(j层的单元数+1)

代价函数

假设最后输出的

53fe00035fcea4d3d091

,即代表输出层有K个单元

53fc00038d9411d63421

其中,

56790000af244b2c06b9

代表第i个单元输出与逻辑回归的代价函数

53fe00035fcf3771d23e

差不多,就是累加上每个输出(共有K个输出)

正则化

L-->所有层的个数

53fd00038885dd15798e

-->第l层unit的个数

正则化后的代价函数为

567800013d5aa075f8b6

56790000af258434b1ea

共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)

正则化后的代价函数实现代码:

# 代价函数

def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0] # theta的中长度

# 还原theta1和theta2

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

# np.savetxt("Theta1.csv",Theta1,delimiter=',')

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

# 正则化向theta^2

term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''代价'''

J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m

return np.ravel(J)

反向传播BP

上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度

BP反向传播的目的就是求代价函数的梯度

假设4层的神经网络,

53fe00035fd0e9f0cfc6

记为-->l层第j个单元的误差

53fd00038887f554fdcb

《===》

567800013d5c8b6d3723

(向量化)

53ff000306bde7851f20

53fd000388897f720610

没有

53ff000306beb4639705

,因为对于输入没有误差

因为S型函数

53fd0003888a76cb83ca

的倒数为:

53fc00038d95128c3b92

所以上面的

54000002fa144a093475

56790000af2826bd9182

可以在前向传播中计算出来

反向传播计算梯度的过程为:

567800013d5e58ee907d

56790000af297a64bc3f

是大写的

53ff000306c031ccf3ba

for i=1-m:-

53fe00035fd178b16df7

-正向传播计算

54000002fa17547ebc9f

(l=2,3,4...L)

-反向计算

54000002fa16a90712a0

53ff000306c2b9d4ab86

...

567800013d5f44fc3e53

-

56790000af2b95cf8128

-

567800013d60378d1f8c

567800013d61baceecff

最后

53ff000306c3692ec6a3

,即得到代价函数的梯度

实现代码:

# 梯度

def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0]

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重

Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重

Theta1[:,0] = 0;

Theta2[:,0] = 0;

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''反向传播,delta为误差,'''

delta3 = np.zeros((m,num_labels))

delta2 = np.zeros((m,hidden_layer_size))

for i in range(m):

delta3[i,:] = h[i,:]-class_y[i,:]

Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))

delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])

Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

'''梯度'''

grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m

return np.ravel(grad)

BP可以求梯度的原因

实际是利用了链式求导法则

因为下一层的单元利用上一层的单元作为输入进行计算

大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

53ff000306c41b281b2d

求误差更详细的推导过程:

53fd0003888de1345e3f

梯度检查

检查利用BP求的梯度是否正确

利用导数的定义验证:

567800013d6274274f24

求出来的数值梯度应该与BP求出的梯度非常接近

验证BP正确后就不需要再执行验证梯度的算法了

实现代码:

# 检验梯度是否计算正确

# 检验梯度是否计算正确

def checkGradient(Lambda = 0):

'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''

input_layer_size = 3

hidden_layer_size = 5

num_labels = 3

m = 5

initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);

initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)

X = debugInitializeWeights(input_layer_size-1,m)

y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

y = y.reshape(-1,1)

nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta

'''BP求出梯度'''

grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,

num_labels, X, y, Lambda)

'''使用数值法计算梯度'''

num_grad = np.zeros((nn_params.shape[0]))

step = np.zeros((nn_params.shape[0]))

e = 1e-4

for i in range(nn_params.shape[0]):

step[i] = e

loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

num_grad[i] = (loss2-loss1)/(2*e)

step[i]=0

# 显示两列比较

res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))

print res

权重的随机初始化

神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。

所以应该初始化为接近0的数

实现代码

# 随机初始化权重theta

def randInitializeWeights(L_in,L_out):

W = np.zeros((L_out,1+L_in)) # 对应theta的权重

epsilon_init = (6.0/(L_out+L_in))**0.5

W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵

return W

预测

正向传播预测结果

实现代码

# 预测

def predict(Theta1,Theta2,X):

m = X.shape[0]

num_labels = Theta2.shape[0]

#p = np.zeros((m,1))

'''正向传播,预测结果'''

X = np.hstack((np.ones((m,1)),X))

h1 = sigmoid(np.dot(X,np.transpose(Theta1)))

h1 = np.hstack((np.ones((m,1)),h1))

h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

'''

返回h中每一行最大值所在的列号

- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)

- 最后where找到的最大概率所在的列号(列号即是对应的数字)

'''

#np.savetxt("h2.csv",h2,delimiter=',')

p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))

for i in np.arange(1, m):

t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))

p = np.vstack((p,t))

return p

输出结果

梯度检查:

54000002fa194aef5689

随机显示100个手写数字

53ff000306c5090cfe65

显示theta1权重

56790000af2c5ed547f9

训练集预测准确度

53fe00035fd33657f151

归一化后训练集预测准确度

53fc00038d97ef88a447

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个使用BP神经网络进行预测的Python示例代码: ```python import numpy as np # 构造训练数据 train_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) train_label = np.array([[0], [1], [1], [0]]) # 定义BP神经网络 class BPNeuralNetwork(): def __init__(self, input_size, hidden_size, output_size, learning_rate): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.learning_rate = learning_rate # 初始化权重 self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size) self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size) # sigmoid函数 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) # sigmoid函数的导数 def sigmoid_derivative(self, x): return x * (1 - x) # 训练网络 def train(self, data, label): for i in range(len(data)): # 前向传播 hidden = self.sigmoid(np.dot(data[i], self.weights_input_hidden)) output = self.sigmoid(np.dot(hidden, self.weights_hidden_output)) # 反向传播 output_error = label[i] - output output_delta = output_error * self.sigmoid_derivative(output) hidden_error = np.dot(output_delta, self.weights_hidden_output.T) hidden_delta = hidden_error * self.sigmoid_derivative(hidden) # 更新权重 self.weights_hidden_output += self.learning_rate * hidden.reshape(-1, 1) * output_delta self.weights_input_hidden += self.learning_rate * data[i].reshape(-1, 1) * hidden_delta # 预测 def predict(self, data): hidden = self.sigmoid(np.dot(data, self.weights_input_hidden)) output = self.sigmoid(np.dot(hidden, self.weights_hidden_output)) return output # 构造BP神经网络 bp_nn = BPNeuralNetwork(2, 4, 1, 0.1) # 训练BP神经网络 for i in range(10000): bp_nn.train(train_data, train_label) # 预测 print(bp_nn.predict(np.array([0, 0]))) print(bp_nn.predict(np.array([0, 1]))) print(bp_nn.predict(np.array([1, 0]))) print(bp_nn.predict(np.array([1, 1]))) ``` 该示例代码使用BP神经网络来预测XOR运算的结果。代码中首先构造了训练数据和标签,然后定义了一个BPNeuralNetwork类,该类包含了sigmoid函数、sigmoid函数的导数、训练和预测方法。在训练方法中,使用前向传播计算输出值,使用反向传播计算误差并更新权重。在预测方法中,使用前向传播计算输出值。最后,对训练好的BP神经网络进行预测并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值