java有序二叉树hasnext_【LeetCode】108.将有序数组转换为平衡二叉树(中序遍历三种方法,java实现)...

题目

0f4d109e163ab518f0d8b38ff6aae34d.png

解析

遍历树的方法。DFS(先序遍历,中序遍历,后序遍历);BFS。

遍历树的两种通用策略:

深度优先遍历(DFS)

这种方法以深度 depth 优先为策略,从根节点开始一直遍历到某个叶子节点,然后回到根节点,在遍历另外一个分支。

根据根节点,左孩子节点和右孩子节点的访问顺序又可以将 DFS 细分为先序遍历 preorder,中序遍历 inorder 和后序遍历 postorder。

广度优先遍历(BFS)

按照高度顺序,从上往下逐层遍历节点。

先遍历上层节点再遍历下层节点。

下图中按照不同的方法遍历对应子树,得到的遍历顺序都是 1-2-3-4-5。根据不同子树结构比较不同遍历方法的特点。

![img](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9waWMubGVldGNvZGUtY24uY29tL0ZpZ3VyZXMvMTA4L2Jmc19kZnMucG5n?x-oss-process=image/format,png width=500 height=250)

将有序数组转换为二叉搜索树的结果为什么 不唯一 ?

众所周知,二叉搜索树的中序遍历是一个升序序列。

将有序数组作为输入,可以把该问题看做 根据中序遍历序列创建二叉搜索树。

这个问题的答案唯一吗。例如:是否可以根据中序遍历序列和二叉搜索树之间是否一一对应,答案是 否定的。

下面是一些关于 BST 的知识。

中序遍历不能唯一确定一棵二叉搜索树。

先序和后序遍历不能唯一确定一棵二叉搜索树。

先序/后序遍历和中序遍历的关系:

inorder = sorted(postorder) = sorted(preorder),

中序+后序、中序+先序可以唯一确定一棵二叉树。

因此,“有序数组 -> BST”有多种答案。

984be8580e7862e31729785348f1485d.png

因此,添加一个附件条件:树的高度应该是平衡的、例如:每个节点的两棵子树高度差不超过 1。

这种情况下答案唯一吗?仍然没有。

ca4f1a9b69654eb2826205315f94d3ad.png

高度平衡意味着每次必须选择中间数字作为根节点。这对于奇数个数的数组是有用的,但对偶数个数的数组没有预定义的选择方案。

b70f323bc8b1ee74e4295c907b21f41c.png

对于偶数个数的数组,要么选择中间位置左边的元素作为根节点,要么选择中间位置右边的元素作为根节点,不同的选择方案会创建不同的平衡二叉搜索树。方法一始终选择中间位置左边的元素作为根节点,方法二始终选择中间位置右边的元素作为根节点。方法一和二会生成不同的二叉搜索树,这两种答案都是正确的。

方法一:中序遍历:始终选择中间位置左边元素作为根节点

算法

ece0aa372d523139d7193e90887cbad8.png

方法 helper(left, right) 使用数组 nums 中索引从 left 到 right 的元素创建 BST:

如果 left > right,子树中不存在元素,返回空。

找出中间元素:p = (left + right) // 2。

创建根节点:root = TreeNode(nums[p])。

递归创建左子树 root.left = helper(left, p - 1) 和右子树 root.right = helper(p + 1, right)。

返回 helper(0, len(nums) - 1)。

代码:

class Solution {

int[] nums;

public TreeNode helper(int left, int right) {

if (left > right) return null;

// always choose left middle node as a root

int p = (left + right) / 2;

// inorder traversal: left -> node -> right

TreeNode root = new TreeNode(nums[p]);

root.left = helper(left, p - 1);

root.right = helper(p + 1, right);

return root;

}

public TreeNode sortedArrayToBST(int[] nums) {

this.nums = nums;

return helper(0, nums.length - 1);

}

}

复杂度分析

时间复杂度:O(N),每个元素只访问一次。

空间复杂度:O(N),二叉搜索树空间 O(N),递归栈深度 O(logN)。

方法二:中序遍历:始终选择中间位置右边元素作为根节点

算法

4534b3c78d4f4c70b38160e32d56a837.png

方法 helper(left, right) 使用数组 nums 中索引从 left 到 right 的元素创建 BST:

如果 left > right,子树中不存在元素,返回空。

找出中间位置右边元素:

p = (left + right) // 2。

如果 left + right 是偶数,则 p + 1。

创建根节点:root = TreeNode(nums[p])。

递归创建左子树 root.left = helper(left, p - 1) 和右子树 root.right = helper(p + 1, right)。

返回 helper(0, len(nums) - 1)。

class Solution {

int[] nums;

public TreeNode helper(int left, int right) {

if (left > right) return null;

// always choose right middle node as a root

int p = (left + right) / 2;

if ((left + right) % 2 == 1) ++p;

// inorder traversal: left -> node -> right

TreeNode root = new TreeNode(nums[p]);

root.left = helper(left, p - 1);

root.right = helper(p + 1, right);

return root;

}

public TreeNode sortedArrayToBST(int[] nums) {

this.nums = nums;

return helper(0, nums.length - 1);

}

}

复杂度分析

时间复杂度:O(N),每个元素只访问一次。

空间复杂度:O(N),二叉搜索树空间 O(N),递归栈深度 O(logN)。

方法三:中序遍历:选择任意一个中间位置元素作为根节点

不做预定义选择,每次随机选择中间位置左边或者右边元素作为根节点。每次运行的结果都不同,但都是正确的。

1f9145073855b65ed9442b29390e526a.png

算法

方法 helper(left, right) 使用数组 nums 中索引从 left 到 right 的元素创建 BST:

如果 left > right,子树中不存在元素,返回空。

找出中间位置右边元素:

p = (left + right) // 2。

如果 left + right 是偶数,随机选择 p + 0 或者 p + 1。

创建根节点:root = TreeNode(nums[p])。

递归创建左子树 root.left = helper(left, p - 1) 和右子树 root.right = helper(p + 1, right)。

返回 helper(0, len(nums) - 1)。

class Solution {

int[] nums;

Random rand = new Random();

public TreeNode helper(int left, int right) {

if (left > right) return null;

// choose random middle node as a root

int p = (left + right) / 2;

if ((left + right) % 2 == 1) p += rand.nextInt(2);

// inorder traversal: left -> node -> right

TreeNode root = new TreeNode(nums[p]);

root.left = helper(left, p - 1);

root.right = helper(p + 1, right);

return root;

}

public TreeNode sortedArrayToBST(int[] nums) {

this.nums = nums;

return helper(0, nums.length - 1);

}

}

复杂度分析

时间复杂度:O(N),每个元素只访问一次。

空间复杂度:O(N),二叉搜索树空间 O(N),递归栈深度 O(logN)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值