确定最佳聚类数matlab代码_TSP问题、MTSP问题建模及求解(MATLAB)

本文探讨了使用MATLAB解决旅行商问题(TSP)和多旅行商问题(MTSP)。通过建立模型,运用蚁群算法求解TSP,展示了充电小车的最短路线。同时,采用遗传算法解决MTSP,为多辆小车协同完成任务提供最优路径。附带MATLAB源代码,参考了相关学术文献。
摘要由CSDN通过智能技术生成

点击蓝字

关注我们

TSP

问题

PART 01

问题提出

e75f40e9003cdb8c2ea1214b28745671.png

图1|坐标分布图

数据中心为某辆充电小车的出发点,坐标1~坐标29为29个充电点,充电小车需从数据中心出发并且依次经过29个充电点,最后回到数据中心。为使路线总路径最短,需确定充电小车每一步该怎么走,这就是典型的TSP问题。

模型建立

88b08bc76ce512b2d2043717682b39a9.png

TSP求解算法对比

734f10a0e68641fd0550bab9325cc637.png

蚁群算法求解TSP问题

1bf8fdf39c09e11cce906c8ef26834dd.png

求解结果

f2fd86ba5334b77abb421aa09ea9afea.png

图2|移动小车充电路线图

MTSP

问题

PART 02

问题提出

        当数据中心含有4辆小车时,4辆小车需要合作完成充电任务,即每辆小车负责一部分充电点的充电,并且使总路程最短,该问题为典型的多旅行社问题,即MTSP问题。

模型建立

1bec48267573caeee565d7d5864a14da.png

遗传求解MTSP问题

2da5634ff4e7e36ef1af2bc6f214bd93.png

求解结果

15adc0f7b6ed9d35e6013f92c346f405.png

图3|多移动小车充电路线图

MATLAB源代码

蚁群算法求解TSP问题

clc;clf;clear;data1 = xlsread('附件1.xlsx');x = data1(:,1);y = data1(:,2);X = data1(:,1:2);[N,n]=size(X);      % N =测试样本数;n =测试样本的属性数;K = 4;              % K = 组数; R = 100;            % R = 蚂蚁数; t_max = 1000;       % t_max =最大迭代次数;                 % 初始化c = 10^-2;tau = ones(N,K) * c;    %信息素矩阵,初始值为0.01的N*K矩阵(样本数*聚类数)q = 0.9;                % 阈值qrho = 0.1;              % 蒸发率best_solution_function_value = inf; % 最佳路径度量值(初值为无穷大,该值越小聚类效果越好)tict = 1; % while ((t<=t_max))                             %达到最大迭代次数而终止% while ((best_solution_function_value>=19727))  %达到一定的聚类效果而终止while ((best_solution_function_value>=19727))        %路径标识字符:标识每只蚂蚁的路径    solution_string = zeros(R,N+1);         for i = 1 : R                       %以信息素为依据确定蚂蚁的路径        r = rand(1,N);    %随机产生值为0-1随机数的1*51的数组        for g = 1 : N            if r(g) < q     %如果r(g)小于阈值                tau_max = max(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值