直角三角形的边角关系_全等三角形判定之边角边定理的运用,学习证明题的证明思路...

博客介绍了全等三角形边角边(SAS)定理,强调利用该定理判定全等需满足“两边及其夹角”条件及书写顺序。通过直角三角形例题展示如何运用定理证明边相等,还提及用分析法寻找证明思路,以及判定时要注意公共边、角和辅助线添加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全等三角形的判定中,边角边定理的运用也是边、角存在等量关系时,常用到的判定方法,边角边定理的内容是,两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”,它的书写格式,在列举两个三角形全等的条件时,一般把夹角写在中间,以突出两边及其夹角对应相等。需要特别注意的是,利用“SAS”判定两个三角形全等时,必须满足“两边及其它们的夹角”这一条件,书写的时候,按照“边角边”的顺序书写。注意有两边和其中的一角对应相等的两个三角形不一定全等。

0d6ddecc03246af1ac42d6ec6eadeafe.png

例题:如图,在直角三角形ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB。(1)、求∠CAD的度数,(2)、延长AC至E,使CE=AC,求证:DA=DE.

2068e21bb34469920bef33d8ef960365.png

【解析】:(1)、利用直角三角形中两个锐角互余的性质和角平分线的性质进行解答;已知在Rt△ABC中,∠ACB=90°,∠B=30°,所以∠CAB=60°,又已知AD平分∠CAB,所以∠CAD=∠DAB=30°,即∠CAD=30°。(2)、要证边或角相等,只要证它们所在的三角形全等即可。已知∠ACB=90°,所以∠ACD=90°,∠ECD=90°,则∠ACD=∠ECD,又已知AC=EC,所以在ACD与∠ECD中,AC=EC,∠ACD=∠ECD,CD=CD,所以△ACD≌△ECD(SAS),所以DA=DE。

6dfb4f088ddc1c7de6d0b4dd427613ca.png

在做证明题的时候,经常会用到分析法来寻找证明思路,上题中,就是运用了分析法寻找证明思路,所谓的分析法就是执果索因,由未知看需知,思维方式上就是从问题入手,找能求出问题所需要的条件或可行思路,若问题需要的条件未知,则把所需条件当作中间问题,再找出解决中间问题的条件。以此类推,最终找寻到已知条件,或者是定理等。除了逐渐学会证明题的证明思路,在对全等三角形进行判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形,对于辅助线的添加,也是学习过程中,需要掌握的。

31d3a8b64f8ba9adbb44675d4c8cc06e.png

希望同学们将几个判定定理,每一个都分析透彻,在做题中,才能够得心应手。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值