
三角形的分类

三角形的内角和定理及推论
三角形的内角和定理: 三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。三角形的三边关系定理及推论
三角形三边关系定理: 三角形的两边之和大于第三边。 推论: 三角形的两边之差小于第三边。三角形的面积

三角形中的主要线段
1、三角形中的主要线段有:三角形的角平分线、中线和高线。 2、这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。 并且对这三条线段必须明确三点: (1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。 (2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。 (3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。全等三角形
全等三角形的概念: 能够完全重合的两个三角形叫做全等三角形三角形全等的判定定理
边角边定理: 有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) 角边角定理: 有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) 边边边定理: 有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 角角边定理: 有两个角和其中一个角的对应边相等的两个三角形全等(可简写成“角角边”或“AAS”)直角三角形全等的判定
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理): 有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 4.线段中垂线和角平分线的性质,基本尺规作图:作角的平分线,线段的中垂线,作一个角等于已知角,按给定条件作三角形。
初中数学选择题和填空题解题技巧…(附案例)
往初一到初三数学最全【公式定理】,三年考试都能用,学霸必备!
期初中数学三角形14种辅助线添加方法。赶快分享收藏!!
精17张动图模拟初中几何解题过程,几何从此不再难!
彩 |标签:初中数学预习 备战中考 做题技巧 学习方法 更多内容请关注微信公众号:初中数学预习,ID:zksxyx100 |声明:文章综合来自网络,版权归原作者所有,如有侵权请联系小编删除!------中考数学------
激发兴趣 成就高分
