三角形:
1.三角形的定义:由三条不在同一直线上的线段首尾顺次连接组成的平面图形叫做三角形
2.三角形的表示:三角形用符号“△”表示,记作△ABC ,读作:三角形ABC
3.三角形的边:三角形任何两边之和大于第三边,任何两边之差小于第三边
4.三条线段要组成一个三角形必须满足任意两条线段的和大于另一条线段
5.锐角三角形的三条高交于同一点;锐角三角形的三条高都在三角形的内部
6.直角三角形的三条高交于直角的顶点; 直角三角形的三条高的交点在直角的顶点
7.钝角三角形的三条高不相交于一点; 钝角三角形的三条高所在直线交于一点(交点在三角形外部)
高、中线与角平分线:
1.高:顶点和垂足之间的线段叫做三角形这边上的高,简称三角形的高(要标明垂直的记号和垂足的字母)
三角形的三条高所在的直线交于一点
2.中线:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形这边上的中线
3.角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段,叫做三角形的角平分线
角的平分线上的点到角的两边的距离相等
到角的两边的距离相等的点在角平分线上
4.三角形的三条角平分线相较于一点,交点在三角形的内部
5.三角形具有稳定性,四边形具有不稳定性
三角形的内角:
1.三角形的内角和等于180°
2.直角三角形的两个锐角互余 , 反之两个锐角互余的三角形是直角三角形
三角形的外角:
1.三角形中内角的一边与另一边的反向延长线组成的角,叫做三角形的外角
2.定理:三角形的一个外角等于与它不相邻的两个内角的和
3.三角形的一个外角大于任何一个与它不相邻的内角
多边形及其内角和:
1.由n条不在同一条直线上的线段首位顺次连结组成的平面图形叫做n变形,又称为多边形
2.在平面内,内角都相等,边也都相等的多边形叫做正多边形
3.对角线:连接多边形不相邻的两个顶点的线段
4.一个顶点可以发出多少条对角线:(n-3 )条
5.一个顶点发出的对角线可以把n边形划分为几个三角形:(n-2)条
6. n边形的内角和: (n-2)× 180°
7. n边形外角和: n边形外角和=n个平角-n边形内角和
=n×180°- (n-2)×180°
=360°
n边形的外角和为360°
全等三角形:
1.能够完全重合的两个图形叫做全等形
2.能够完全重合的两个三角形叫做全等三角形 记作:△ABC≌△DEF 读作:△ABC全等于△DEF
(把对应顶点的字母写在对应的位置上)
3.在全等三角形中,互相重合的顶点称为对应顶点,互相重合的边称为对应边,互相重合的角称为对应角
4.性质:
(1)全等三角形的对应边相等
(2)全等三角形的对应角相等
三角形全等的判定:
1. 三角形的判定1:三边对应相等的两个三角形全等,简写:SSS或“边边边”
2. 三角形的判定2:两边和它们的夹角对应相等的两个三角形全等,简写:SAS或“边角边”
3. 三角形的判定3:两角和它们的夹边对应相等的两个三角形全等,简写:ASA或“角边角”
4. 三角形的判定4:有两角和其中一个角所对的边对应相等的两个三角形全等,简写:AAS或“角角边”
5. 判定两个直角三角形全等的方法:斜边和一条直角边对应相等的两个直角三角形全等,简写:HL或“斜边、直角边”
证明的书写步骤:
(1)准备条件:证全等时要用的间接条件要先证好
(2)三角形全等书写三步骤:写出在那两个三角形中
摆出三个条件用大括号括起来
写出全等结论
等腰三角形
定义:有两条边相等的三角形叫做等腰三角形
等腰三角形中,相等的两条边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角
等腰三角形的性质:等腰三角形的两个底角相等 ,“等边对等角”
等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合
等边三角形
定义:三边都相等的三角形是等边三角形
等边三角形的性质:等边三角形的三边都相等
等边三角形的三个内角都相等,并且每一个角都等与60°
等边三角形的判定方法:三条边都相等的三角形是等边三角形
三个角都相等的三角形是等边三角形
有一个角是60°的等腰三角形是等边三角形
1.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
2.直角三角形斜边上的中线等于斜边的一半
3.勾股定理: a²+b²=c² 直角三角形的直角边的平方和等于斜边的平方
4.勾股定理的逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形
5.两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题
6.能够成为直角三角形三条边长的的三个正整数,称为勾股数
7.任何一个命题都有逆命题;原命题是真命题,其逆命题不一定是真命题