
写在前面的话:
在数学分析的计算题当中,我们最常见的就是求极限,求导,求不定积分。因此想在这里分享一下自己的学习成果,希望可以帮助到你们。
本次不等积分大合集将分为三个部分——方法篇、技巧篇、例题训练篇。希望大家可以多多支持
一:换元积分法
1、第一换元法(凑微分法)
这类方法主要是特别考验你对数字的敏感程度,对求导公式的运用程度。方法本身是特别容易理解的。因此我们必须熟练记忆一些初等函数求导公式以及额外补充的一些推出来的求导公式。
简单举个例子
这时候换元,令
说白了第一换元法是为了凑微分,当熟练了之后可以在脑海中进行换元
如果有初学者不明白 为什么,我们可以这样理解
令,那么
,题做了多了对求导公式掌握程度高了,我们就会变得很熟练
第一换元法常见的有下列几种情况
(1)三角形式
【1.1】
原式
为什么要利用cosx来凑微分而不是sinx?
因为在三角函数中,最容易处理的是偶数次方,最难处理的是奇数次方,偶数次方我们可以利用各种公式进行升幂或者降幂,因此我们如果将奇数次方通过凑微分变成了偶数次方,那就非常好了
(2)高次幂问题
【1.2】
原式
(3)高次幂多项式与三角函数的转化
原式
这里利用了![]()
2、第二换元法(可以说是第一类换元法的逆应用)
通过换元,将形式复杂的积分转换为形式简单的积分
举个例子:求
解:令
一定要记住最后的换元要重新带回去
第二类换元法常见的有以下几种形式:
(1)将无理根式换元为有理式
【2.1】
解:令
对于含多个次数不同的根式时,换元时要换元开根号次数的最小公倍数