python主成分分析_Python的主成分分析PCA算法

这篇文章很不错:https://blog.csdn.net/u013082989/article/details/53792010

为什么数据处理之前要进行归一化???(这个一直不明白)

这个也很不错:https://blog.csdn.net/u013082989/article/details/53792010#commentsedit

下面是复现一个例子:

# -*- coding: utf-8 -*-

#来源:https://blog.csdn.net/u013082989/article/details/53792010

#来源:https://blog.csdn.net/hustqb/article/details/78394058 (这里有个例子)关于降维之后的坐标系问题,???结合里面的例子

#用库函数实现的过程:

#导入需要的包:

import numpy as np

from matplotlib import pyplot as plt

from scipy import io as spio

from sklearn.decomposition import pca

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

#归一化数据,并作图

def scaler(X):

"""

注:这里的归一化是按照列进行的。也就是把每个特征都标准化,就是去除了单位的影响。

"""

scaler=StandardScaler()

scaler.fit(X)

x_train=scaler.transform(X)

return x_train

#使用pca模型拟合数据并降维n_components对应要降的维度

def jiangwei_pca(x_train,K): #传入的是X的矩阵和主成分的个数K

model=pca.PCA(n_components=K).fit(x_train)

Z=model.transform(x_train) #transform就会执行降维操作

#数据恢复,model.components_会得到降维使用的U矩阵

Ureduce=model.components_

x_rec=np.dot(Z,Ureduce) #数据恢复

return Z,x_rec #这里Z是将为之后的数据,x_rec是恢复之后的数据。

if __name__ == '__main__':

X=np.array([[1,1],[1,3],[2,3],[4,4],[2,4]])

x_train=scaler(X)

print('x_train:',x_train)

Z,x_rec=jiangwei_pca(x_train,2)

print("Z:",Z)

print("x_rec:",x_rec) #如果有时候,这里不能够重新恢复x_train,一个原因可能是主成分太少。

print("x_train:",x_train)

## 这里的主成分为什么不是原来的两个。

## 还有一个问题是,如何用图像表现出来。

## 还有一个问题就是如何得到系数,这个系数是每个特征在主成分中的贡献,要做这个就需要看矩阵,弄明白原理:

或许和这个程序有关:pca.explained_variance_ratio_

摘自:https://blog.csdn.net/qq_36523839/article/details/82558636

这里提一点:pca的方法explained_variance_ratio_计算了每个特征方差贡献率,所有总和为1,explained_variance_为方差值,通过合理使用这两个参数可以画出方差贡献率图或者方差值图,便于观察PCA降维最佳值。

在提醒一点:pca中的参数选项可以对数据做SVD与归一化处理很方便,但是需要先考虑是否需要这样做。

关于pca的一个推导例子:

805903-20181224170955851-918124545.png

、、

根据最后的图形显示来看,一共有五个样本点。而从下面的矩阵看,似乎不是这样???

有点纠结。

从对矩阵X的求均值过程可以知道,是对行求均值的。然后每行减掉均值。

(这样的话,也就是说:每一行是一个特征???,就不太明白了。)

应该写成这样比较清楚:(每一列是一个特性)

[

[1,1]

[1,3]

[2,3]

[4,4]

[2,4]

]

805903-20181224171022443-1970013551.png

、、

从下面看出这里除的是5,也就是说5是m,也就是行数。???

805903-20181224171053675-791648777.png

、、

最后降维到一个特征::

下面图片中P的部分,是两个数,也就是两个特征的系数。代表着特征的系数。。。

关键是用的别人的库,但是怎么弄???

805903-20181224171117816-1155385569.png

、、

上面

805903-20181224171145883-1393347943.png

#、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

下面我们来分析另一个例子:这个例子是官方给出的:

程序如下:

# -*- coding: utf-8 -*-

"""

测试

这里是Python的pca主成分分析的一个测试程序

"""

import numpy as np

from sklearn.decomposition import PCA

X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

pca = PCA(n_components='mle') #这里是让机器决定主成分的个数,我们也可以自行设置。

pca = PCA(n_components=2) #这里设置主成分为,这里不能设置成3,因为这里的特征本身只有两个。

pca.fit(X)

print("这里是X:")

print(X)

Z=pca.transform(X) #transform就会执行降维操作

print('这里是Z:')

print(Z)

#Z = np.dot(X, self.components_.T)

# PCA(copy=True, n_components=2, whiten=False)

print(pca.explained_variance_ratio_)

然后运行程序输出的结果:

这里是X:

[[-1 -1]

[-2 -1]

[-3 -2]

[ 1 1]

[ 2 1]

[ 3 2]]

可能是系数的东西: 这里有可能是没个主成分中包含各个特征的权重系数。

你有没有感觉到这个矩阵有一定的特性,有点对角线对称的样子。

[[-0.83849224 0.54491354]

[-0.54491354 -0.83849224]]

这里是Z: 这里的Z实际上主成分的意思。主成分也就是综合特征

[[ 1.38340578 0.2935787 ]

[ 2.22189802 -0.25133484]

[ 3.6053038 0.04224385]

[-1.38340578 -0.2935787 ]

[-2.22189802 0.25133484]

[-3.6053038 -0.04224385]]

[0.99244289 0.00755711]

要捋清一个问题,我们想要得到的是什么?

我们想要得到的是每个主成分前面包含特征的系数。

主成分1=权重11*特征1+权重12*特征2+权重13*特征3···

主成分2=权重21*特征1+权重22*特征2+权重23*特征3···

[[-0.83849224 0.54491354]

[-0.54491354 -0.83849224]]

主成分1=(-0.83849224) *特征1+(-0.54491354)*特征2···

主成分2=(0.54491354) *特征1+(-0.83849224)*特征2···

就是上面这种系数,

我还是有一点疑问?为什么?这个系数矩阵是对称的,这样有点不是很科学??

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值