python实现均值滤波_opencv+python实现均值滤波

本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下

原理

均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值。

均值滤波也可以看成滤波核的值均为 1 的滤波。

优点:算法简单,计算速度快;

缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

代码

import cv2 as cv

import numpy as np

import math

import copy

def spilt( a ):

if a/2 == 0:

x1 = x2 = a/2

else:

x1 = math.floor( a/2 )

x2 = a - x1

return -x1,x2

def original (i, j, k,a, b,img):

x1, x2 = spilt(a)

y1, y2 = spilt(b)

temp = np.zeros(a * b)

count = 0

for m in range(x1, x2):

for n in range(y1, y2):

if i + m < 0 or i + m > img.shape[0] - 1 or j + n < 0 or j + n > img.shape[1] - 1:

temp[count] = img[i, j, k]

else:

temp[count] = img[i + m, j + n, k]

count += 1

return temp

def average_function(a , b ,img):

img0 = copy.copy(img)

for i in range (0 , img.shape[0] ):

for j in range (2 ,img.shape[1] ):

for k in range (img.shape[2]):

temp = original(i, j, k, a, b, img0)

img[i,j,k] = int ( np.mean(temp))

return img

def main():

img0 = cv.imread(r"noise.jpg")

ave_img = average_function( 3 , 3, copy.copy(img0) ) #(3,3)滤波器大小

cv.imshow("ave_img",ave_img)

cv.imshow("original",img0)

cv.waitKey(0)

cv.destroyAllWindows()

if __name__ == "__main__":

main()

样例

原图:

blank.gif

滤波核为3×3 3\times 33×3的均值滤波后:

blank.gif

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2020-02-17

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值